-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbatch_correction_3Lfct.R
541 lines (521 loc) · 32.9 KB
/
batch_correction_3Lfct.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Author: jfmartin
# Modified by : mpetera
###############################################################################
# Correction of analytical effects inter and intra batch on intensities using quality control pooled samples (QC-pools)
# according to the algorithm mentioned by Van der Kloet (J Prot Res 2009).
# Parameters : a dataframe of Ions intensities and an other of samples? metadata which must contains at least the three following columns :
# "batch" to identify the batches of analyses ; need at least 3 QC-pools for linear adjustment and 8 for lo(w)ess adjustment
# "injectionOrder" integer defining the injection order of all samples : QC-pools and analysed samples
# "sampleType" indicates if defining a sample with "sample" or a QC-pool with "pool"
# NO MISSING DATA are allowed
# Version 0.91 insertion of ok_norm function to assess correction feasibility
# Version 0.92 insertion of slope test in ok_norm
# Version 0.93 name of log file define as a parameter of the correction function
# Version 0.94 Within a batch, test if all QCpools or samples values = 0. Definition of an error code in ok_norm function (see function for details)
# Version 0.99 include non linear lowess correction.
# Version 1.00 the corrected result matrix is return transposed in Galaxy
# Version 1.01 standard deviation=0 instead of sum of value=0 is used to assess constant data in ok_norm function. Negative values in corrected matrix are converted to 0.
# Version 1.02 plotsituation create a result file with the error code of non execution of correction set by function ok_norm
# Version 1.03 fix bug in plot with "reg" option. suppression of ok_norm=4 condition if ok_norm function
# Version 2.00 Addition of loess function, correction indicator, plots ; modification of returned objects' format, some plots' displays and ok_norm ifelse format
# Version 2.01 Correction for pools negative values earlier in norm_QCpool
# Version 2.10 Script refreshing ; vocabulary adjustment ; span in parameters for lo(w)ess regression ; conditionning for third line ACP display ; order in loess display
# Version 2.11 ok1 and ok2 permutation (ok_norm) ; conditional display of regression (plotsituation) ; grouping of linked lignes + conditioning (normX) ; conditioning for CVplot
# Version 2.20 acplight function added from previous toolBox.R [# Version 1.01 "NA"-coding possibility added in acplight function]
# Version 2.30 addition of suppressWarnings() for known and controlled warnings ; suppression of one useless "cat" message ; change in Rdata names ; 'batch(es)' in cat
# Version 2.90 change in handling of generated negative and Inf values
# Version 2.91 Plot improvement
# Version 3.00 - handling of sample tags' parameters
# - accepting sample types beyond "pool" and "sample"
# - dealing with NA
# - changes in the normalisation strategy regarding mean values to adjust for NA or 0 values
# - changes in the normalisation strategy regarding unconsistant values (negative or Inf)
ok_norm=function(qcp,qci,spl,spi,method,normref=NA,valimp="0") {
# Function used for one ion within one batch to determine whether or not batch correction is possible
# ok_norm values :
# 0 : no preliminary-condition problem
# 1 : standard deviation of QC-pools or samples = 0
# 2 : insufficient number of QC-pools within a batch (n=3 for linear, n=8 for lowess or loess)
# 2.5 : less than 2 samples within a batch
# 3 : significant difference between QC-pools' and samples' means
# 4 : denominator =0 when on 1 pool per batch <> 0
# 5 : (linear regression only) the slopes ratio ?QC-pools/samples? is lower than -0.2
# 6 : (linear regression only) none of the pool or sample could be corrected if negative and infinite values are turned into NA
# Parameters:
# qcp: intensity of a given ion for pools
# qci: injection numbers for pools
# spl: intensity of a given ion for samples
# spi: injection numbers for samples
# method: to provide specific checks for "linear"
ok=0
if (method=="linear") {minQC=3} else {minQC=8}
if (length(qcp[!is.na(qcp)])<minQC) { ok=2 } else { if (length(spl[!is.na(spl)])<2) { ok=2.5
} else {
if (sd(qcp,na.rm=TRUE)==0 | sd(spl,na.rm=TRUE)==0) { ok=1
} else {
cvp= sd(qcp,na.rm=TRUE)/mean(qcp,na.rm=TRUE); cvs=sd(spl,na.rm=TRUE)/mean(spl,na.rm=TRUE)
rttest=t.test(qcp,y=spl)
reslsfit=lsfit(qci, qcp)
reslsfitSample=lsfit(spl, spi)
ordori=reslsfit$coefficients[1]
penteB=reslsfit$coefficients[2]
penteS=reslsfitSample$coefficients[2]
# Significant difference between samples and pools
if (rttest$p.value < 0.01) { ok=3
} else {
# to avoid denominator =0 when on 1 pool per batch <> 0
if (method=="linear" & length(which(((penteB*qci)+ordori)==0))>0 ){ ok=6
} else {
# different sloop between samples and pools
if (method=="linear" & penteB/penteS < -0.20) { ok=5
} else {
#
if (method=="linear" & !is.na(normref) & valimp=="NA") {
denom = (penteB * c(spi,qci) + ordori)
normval = c(spl,qcp)*normref / denom
if(length(which((normval==Inf)|(denom<1)))==length(normval)){ok=6}
}
}}}}}}
ok_norm=ok
}
plotsituation <- function (x, nbid,outfic="plot_regression.pdf", outres="PreNormSummary.txt",fact="batch",span="none",
sm_meta=list(batch="batch", injectionOrder="injectionOrder", sampleType="sampleType",
sampleTag=list(pool="pool",blank="blank",sample="sample"))) {
# Checks for all ions in every batch if linear or lo(w)ess correction is possible.
# Uses ok_norm function and creates a file (PreNormSummary.txt) with the corresponding error codes.
# Also creates a pdf file with plots of linear and lo(w)ess regression lines.
# Parameters:
# x: dataframe with ions in columns and samples in rows ; x is the result of concatenation of sample metadata file and ions file
# nbid: number of samples description columns (id and factors) with at least : "batch","injectionOrder","sampleType"
# outfic: name of regression plots pdf file
# outres: name of summary table file
# fact: factor to be used as categorical variable for plots and PCA
# span: span value for lo(w)ess regression; "none" for linear or default values
# sm_meta: list of information about sample metadata coding
indfact=which(dimnames(x)[[2]]==fact)
indtypsamp=which(dimnames(x)[[2]]==sm_meta$sampleType)
indbatch=which(dimnames(x)[[2]]==sm_meta$batch)
indinject=which(dimnames(x)[[2]]==sm_meta$injectionOrder)
lastIon=dim(x)[2]
nbi=lastIon-nbid # Number of ions = total number of columns - number of identifying columns
nbb=length(levels(x[[sm_meta$batch]])) # Number of batch = number of levels of "batch" comlumn (factor)
nbs=length(x[[sm_meta$sampleType]][x[[sm_meta$sampleType]] %in% sm_meta$sampleTag$sample])# Number of samples = number of rows with "sample" value in sampleType
pdf(outfic,width=27,height=7*ceiling((nbb+2)/3))
cat(nbi," ions ",nbb," batch(es) \n")
cv=data.frame(matrix(0,nrow=nbi,ncol=2))# initialisation de la dataset qui contiendra les CV
pre_bilan=matrix(0,nrow=nbi,ncol=3*nbb) # dataset of ok_norm function results
for (p in 1:nbi) {# for each ion
par (mfrow=c(ceiling((nbb+2)/3),3),ask=F,cex=1.2)
labion=dimnames(x)[[2]][p+nbid]
indpool=which(x[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool) # QCpools subscripts in x
pools1=x[indpool,p+nbid]; cv[p,1]=sd(pools1,na.rm=TRUE)/mean(pools1,na.rm=TRUE)# CV before correction
for (b in 1:nbb) {# for each batch...
xb=data.frame(x[(x[[sm_meta$batch]]==levels(x[[sm_meta$batch]])[b]),c(indtypsamp,indinject,p+nbid)])
indpb = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool)# QCpools subscripts in the current batch
indsp = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$sample)# samples subscripts in the current batch
normLinearTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear",normref=mean(xb[c(indpb,indsp),3],na.rm=TRUE),valimp="NA")
normLoessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess")
normLowessTest=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess")
pre_bilan[ p,3*b-2]=normLinearTest
pre_bilan[ p,3*b-1]=normLoessTest
pre_bilan[ p,3*b]=normLowessTest
if(length(indpb)>1){
if(span=="none"){span1<-1 ; span2<-2*length(indpool)/nbs}else{span1<-span ; span2<-span}
if(normLoessTest!=2){resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct")}
if(length(which(!(is.na(xb[indsp,3]))))>1){resloessSample=loess(xb[indsp,3]~xb[indsp,2],span=2*length(indpool)/nbs,degree=2,family="gaussian",iterations=4,surface="direct") }
if(normLowessTest!=2){reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2)}
if(length(which(!(is.na(xb[indsp,3]))))>1){reslowessSample=lowess(xb[indsp,2],xb[indsp,3])}
liminf=min(xb[,3],na.rm=TRUE);limsup=max(xb[,3],na.rm=TRUE)
firstinj=min(xb[,2],na.rm=TRUE);lastinj=max(xb[,2],na.rm=TRUE)
plot(xb[indsp,2],xb[indsp,3],pch=16, main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup),xlim=c(firstinj,lastinj))
if(nrow(xb)>(length(indpb)+length(indsp))){points(xb[-c(indpb,indsp),2], xb[-c(indpb,indsp),3],pch=18,col="grey")}
points(xb[indpb,2], xb[indpb,3],pch=5)
if(normLoessTest!=2){points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="green3")}
if(length(which(!(is.na(xb[indsp,3]))))>1){points(cbind(resloessSample$x,resloessSample$fitted)[order(resloessSample$x),],type="l",col="green3",lty=2)}
if(normLowessTest!=2){points(reslowess,type="l",col="red")}; if(length(which(!(is.na(xb[indsp,3]))))>1){points(reslowessSample,type="l",col="red",lty=2)}
abline(lsfit(xb[indpb,2],xb[indpb,3]),col="blue")
if(length(which(!(is.na(xb[indsp,3]))))>1){abline(lsfit(xb[indsp,2],xb[indsp,3]),lty=2,col="blue")}
legend("topleft",c("pools","samples"),lty=c(1,2),bty="n")
legend("topright",c("linear","lowess","loess"),lty=1,col=c("blue","red","green3"),bty="n")
} else {
plot.new()
legend("center","Plot only available when the\nbatch contains at least 2 pools.")
}
}
# series de plot avant correction
minval=min(x[p+nbid],na.rm=TRUE);maxval=max(x[p+nbid],na.rm=TRUE)
plot( x[[sm_meta$injectionOrder]], x[,p+nbid],col=x[[sm_meta$batch]],ylim=c(minval,maxval),ylab=labion,
main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")"),xlab="injection order")
suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction"))
}
dev.off()
pre_bilan=data.frame(pre_bilan)
labion=dimnames(x)[[2]][nbid+1:nbi]
for (i in 1:nbb) {
dimnames(pre_bilan)[[2]][3*i-2]=paste("batch",i,"linear")
dimnames(pre_bilan)[[2]][3*i-1]=paste("batch",i,"loess")
dimnames(pre_bilan)[[2]][3*i]=paste("batch",i,"lowess")
}
bilan=data.frame(labion,pre_bilan)
write.table(bilan,file=outres,sep="\t",row.names=F,quote=F)
}
normlowess=function (xb,detail="no",vref=1,b,span=NULL,valneg="none",sm_meta=list(batch="batch", injectionOrder="injectionOrder", sampleType="sampleType",
sampleTag=list(pool="pool",blank="blank",sample="sample")),min_norm=1){
# Correction function applied to 1 ion in 1 batch.
# Uses a lowess regression computed on QC-pools in order to correct samples intensity values
# xb: dataframe for 1 ion in columns and samples in rows.
# vref: reference value (average of ion)
# b: batch subscript
# detail: level of detail in the outlog file
# span: span value for lo(w)ess regression; NULL for default values
# valneg: to determine what to do with generated negative and Inf values
# sm_meta: list of information about sample metadata coding
# min_norm: minimum value accepted for normalisation term (denominator); should be strictly positive
indpb = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool) # pools subscripts of current batch
indsp = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$sample) # samples of current batch subscripts
labion=dimnames(xb)[[2]][3]
newval=xb[[3]] # initialisation of corrected values = intial values
ind <- 0 # initialisation of correction indicator
normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="lowess")
#cat("batch:",b," dim xb=",dim(xb)," ok=",normTodo,"\n")
if (normTodo==0) {
if(length(span)==0){span2<-2*length(indpb)/length(indsp)}else{span2<-span}
reslowess=lowess(xb[indpb,2],xb[indpb,3],f=span2) # lowess regression with QC-pools
if(length(which(reslowess$y<min_norm))!=0){ # to handle cases where 0<denominator<min_norm or negative
toajust <- which(reslowess$y<min_norm)
if(valneg=="NA"){ reslowess$y[toajust] <- NA
} else { if(valneg=="0"){ reslowess$y[toajust] <- -1
} else {
mindenom <- min(reslowess$y[reslowess$y>=min_norm],na.rm=TRUE)
reslowess$y[toajust] <- mindenom
} } }
for(j in 1:nrow(xb)) {
if (j %in% indpb) {
newval[j]=(vref*xb[j,3]) / (reslowess$y[which(indpb==j)])
} else { # for samples other than pools, the correction value "corv" correspond to the nearest QCpools
corv= reslowess$y[which(abs(reslowess$x-xb[j,2])==min(abs(reslowess$x-xb[j,2]),na.rm=TRUE))]
if (length(corv)>1) {corv=corv[1]}
newval[j]=(vref*xb[j,3]) / corv
}
if((!is.na(newval[j]))&(newval[j]<0)){newval[j]<-0}
}
if (detail=="reg") {
liminf=min(xb[,3],na.rm=TRUE);limsup=max(xb[,3],na.rm=TRUE)
firstinj=min(xb[,2],na.rm=TRUE);lastinj=max(xb[,2],na.rm=TRUE)
plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup),xlim=c(firstinj,lastinj))
if(nrow(xb)>(length(indpb)+length(indsp))){points(xb[-c(indpb,indsp),2], xb[-c(indpb,indsp),3],pch=18)}
points(xb[indpb,2], xb[indpb,3],pch=5)
points(reslowess,type="l",col="red")
}
ind <- 1
} else {# if ok_norm != 0 , we perform a correction based on batch pool or sample average
if((length(which(!is.na(xb[indpb,3])))>0)&(length(which(xb[indpb,3]>0))>0)){
moypool=mean(xb[indpb,3],na.rm=TRUE)
newval = (vref*xb[,3])/moypool
} else {
moysamp=mean(xb[indsp,3],na.rm=TRUE)
if((!is.na(moysamp))&(moysamp>0)){
cat("Warning: no pool value >0 detected in batch",b,"of ion",labion,": sample mean used as normalisation term.\n")
newval = (vref*xb[,3])/moysamp
} else {
dev.off()
stop(paste("\n- - - -\nNo pool nor sample value >0 in batch",b,"of ion",labion,"- correction process aborted.\n- - - -\n"))
}
}
}
newval <- list(norm.ion=newval,norm.ind=ind)
return(newval)
}
normlinear <- function (xb,detail="no",vref=1,b,valneg="none",sm_meta=list(batch="batch", injectionOrder="injectionOrder", sampleType="sampleType",
sampleTag=list(pool="pool",blank="blank",sample="sample")),min_norm=1){
# Correction function applied to 1 ion in 1 batch.
# Uses a linear regression computed on QC-pools in order to correct samples intensity values
# xb: dataframe with ions in columns and samples in rows; x is a result of concatenation of sample metadata file and ion file
# detail: level of detail in the outlog file
# vref: reference value (average of ion)
# b: which batch it is
# valneg: to determine what to do with generated negative and Inf values
# sm_meta: list of information about sample metadata coding
# min_norm: minimum value accepted for normalisation term (denominator); should be strictly positive
indpb = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool)# pools subscripts of current batch
indsp = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$sample)# samples of current batch subscripts
labion=dimnames(xb)[[2]][3]
newval=xb[[3]] # initialisation of corrected values = intial values
ind <- 0 # initialisation of correction indicator
normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="linear",normref=vref,valimp=valneg)
if (normTodo==0) {
ind <- 1
reslsfit=lsfit(xb[indpb,2],xb[indpb,3]) # linear regression for QCpools
reslsfitSample=lsfit(xb[indsp,2],xb[indsp,3]) # linear regression for samples
ordori=reslsfit$coefficients[1]
pente=reslsfit$coefficients[2]
if (detail=="reg") {
liminf=min(xb[,3],na.rm=TRUE);limsup=max(xb[,3],na.rm=TRUE)
firstinj=min(xb[,2],na.rm=TRUE);lastinj=max(xb[,2],na.rm=TRUE)
plot(xb[indsp,2],xb[indsp,3],pch=16,
main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup),xlim=c(firstinj,lastinj))
if(nrow(xb)>(length(indpb)+length(indsp))){points(xb[-c(indpb,indsp),2], xb[-c(indpb,indsp),3],pch=18)}
points(xb[indpb,2], xb[indpb,3],pch=5)
abline(reslsfit)
abline(reslsfitSample,lty=2)
}
# correction with rescaling of ion global intensity (vref)
newval = (vref*xb[,3]) / (pente * (xb[,2]) + ordori)
newval[which((pente * (xb[,2]) + ordori)<min_norm)] <- -1 # to handle cases where 0<denominator<1 or negative
# handling if any negative values
if(length(which((newval==Inf)|(newval<0)))!=0){
toajust <- which((newval==Inf)|(newval<0))
if(valneg=="NA"){ newval[toajust] <- NA
} else { if(valneg=="0"){ newval[toajust] <- 0
} else {
mindenom <- (pente * (xb[,2]) + ordori)
mindenom <- min(mindenom[mindenom>=min_norm],na.rm=TRUE)
newval[toajust] <- vref * (xb[,3][toajust]) / mindenom
}
}
}
} else {# if ok_norm != 0 , we perform a correction based on batch pool or sample average
if((length(which(!is.na(xb[indpb,3])))>0)&(length(which(xb[indpb,3]>0))>0)){
moypool=mean(xb[indpb,3],na.rm=TRUE)
newval = (vref*xb[,3])/moypool
} else {
moysamp=mean(xb[indsp,3],na.rm=TRUE)
if((!is.na(moysamp))&(moysamp>0)){
cat("Warning: no pool value >0 detected in batch",b,"of ion",labion,": sample mean used as normalisation term.\n")
newval = (vref*xb[,3])/moysamp
} else {
dev.off()
stop(paste("\n- - - -\nNo pool nor sample value >0 in batch",b,"of ion",labion,"- correction process aborted.\n- - - -\n"))
}
}
}
newval <- list(norm.ion=newval,norm.ind=ind)
return(newval)
}
normloess <- function (xb,detail="no",vref=1,b,span=NULL,valneg="none",sm_meta=list(batch="batch", injectionOrder="injectionOrder", sampleType="sampleType",
sampleTag=list(pool="pool",blank="blank",sample="sample")),min_norm=1){
# Correction function applied to 1 ion in 1 batch.
# Uses a loess regression computed on QC-pools in order to correct samples intensity values.
# xb: dataframe for 1 ion in columns and samples in rows.
# detail: level of detail in the outlog file.
# vref: reference value (average of ion)
# b: batch subscript
# span: span value for lo(w)ess regression; NULL for default values
# valneg: to determine what to do with generated negative and Inf values
# sm_meta: list of information about sample metadata coding
# min_norm: minimum value accepted for normalisation term (denominator); should be strictly positive
indpb = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool) # pools subscripts of current batch
indsp = which(xb[[sm_meta$sampleType]] %in% sm_meta$sampleTag$sample) # samples of current batch subscripts
indbt = which(xb[[sm_meta$sampleType]] %in% c(sm_meta$sampleTag$sample,sm_meta$sampleTag$pool))# batch subscripts of samples and QCpools
labion=dimnames(xb)[[2]][3]
newval=xb[[3]] # initialisation of corrected values = intial values
ind <- 0 # initialisation of correction indicator
normTodo=ok_norm(xb[indpb,3],xb[indpb,2], xb[indsp,3],xb[indsp,2],method="loess")
if (normTodo==0) {
if(length(span)==0){span1<-1}else{span1<-span}
resloess=loess(xb[indpb,3]~xb[indpb,2],span=span1,degree=2,family="gaussian",iterations=4,surface="direct") # loess regression with QCpools
corv=predict(resloess,newdata=xb[,2])
if(length(which(corv<min_norm))!=0){ # unconsistant values handling
toajust <- which(corv<min_norm)
if(valneg=="NA"){ corv[toajust] <- NA
} else { if(valneg=="0"){ corv[toajust] <- -1
} else {
mindenom <- min(corv[corv>=min_norm],na.rm=TRUE)
corv[toajust] <- mindenom
}
}
}
newvalps=(vref*xb[indbt,3]) / corv[indbt] # to check if correction generates outlier values
refthresh=max(c(3*(quantile(newvalps,na.rm=TRUE)[4]),1.3*(xb[indbt,3])),na.rm=TRUE)
if(length(which(newvalps>refthresh))>0){ # if outliers
# in this case no modification of initial value
newval <- xb[,3]
} else {
newval=(vref*xb[,3]) / corv
newval[newval<0] <- 0
ind <- 1 # confirmation of correction
}
if ((detail=="reg")&(ind==1)) { # plot
liminf=min(xb[,3],na.rm=TRUE);limsup=max(xb[,3],na.rm=TRUE)
firstinj=min(xb[,2],na.rm=TRUE);lastinj=max(xb[,2],na.rm=TRUE)
plot(xb[indsp,2],xb[indsp,3],pch=16,main=paste(labion,"batch ",b),ylab="intensity",xlab="injection order",ylim=c(liminf,limsup),xlim=c(firstinj,lastinj))
if(nrow(xb)>(length(indpb)+length(indsp))){points(xb[-c(indpb,indsp),2], xb[-c(indpb,indsp),3],pch=18)}
points(xb[indpb,2], xb[indpb,3],pch=5)
points(cbind(resloess$x,resloess$fitted)[order(resloess$x),],type="l",col="red")
}
}
if (ind==0) {# if ok_norm != 0 or if correction creates outliers, we perform a correction based on batch pool or sample average
if((length(which(!is.na(xb[indpb,3])))>0)&(length(which(xb[indpb,3]>0))>0)){
moypool=mean(xb[indpb,3],na.rm=TRUE)
newval = (vref*xb[,3])/moypool
} else {
moysamp=mean(xb[indsp,3],na.rm=TRUE)
if((!is.na(moysamp))&(moysamp>0)){
cat("Warning: no pool value >0 detected in batch",b,"of ion",labion,": sample mean used as normalisation term.\n")
newval = (vref*xb[,3])/moysamp
} else {
dev.off()
stop(paste("\n- - - -\nNo pool nor sample value >0 in batch",b,"of ion",labion,"- correction process aborted.\n- - - -\n"))
}
}
}
newval <- list(norm.ion=newval,norm.ind=ind)
return(newval)
}
norm_QCpool <- function (x, nbid, outlog, fact, metaion, detail="no", NormMoyPool=FALSE, NormInt=FALSE, method="linear",span="none",valNull="0",
sm_meta=list(batch="batch", injectionOrder="injectionOrder", sampleType="sampleType",
sampleTag=list(pool="pool",blank="blank",sample="sample")),min_norm=1) {
### Correction applying linear or lo(w)ess correction function on all ions for every batch of a dataframe.
# x: dataframe with ions in column and samples' metadata
# nbid: number of sample description columns (id and factors) with at least "batch", "injectionOrder", "sampleType"
# outlog: name of regression plots and PCA pdf file
# fact: factor to be used as categorical variable for plots
# metaion: dataframe of ions' metadata
# detail: level of detail in the outlog file. detail="no" ACP + boxplot of CV before and after correction.
# detail="plot" with plot for all batch before and after correction.
# detail="reg" with added plots with regression lines for all batches.
# NormMoyPool: not used
# NormInt: not used
# method: regression method to be used to correct : "linear" or "lowess" or "loess"
# span: span value for lo(w)ess regression; "none" for linear or default values
# valNull: to determine what to do with negatively estimated intensities
# sm_meta: list of information about sample metadata coding
# min_norm: minimum value accepted for normalisation term (denominator); should be strictly positive
indfact=which(dimnames(x)[[2]]==fact)
indtypsamp=which(dimnames(x)[[2]]==sm_meta$sampleType)
indbatch=which(dimnames(x)[[2]]==sm_meta$batch)
indinject=which(dimnames(x)[[2]]==sm_meta$injectionOrder)
lastIon=dim(x)[2]
indpool=which(x[[sm_meta$sampleType]] %in% sm_meta$sampleTag$pool)# QCpools subscripts in all batches
valref=apply(as.matrix(x[indpool,(nbid+1):(lastIon)]),2,mean,na.rm=TRUE) # reference value for each ion used to still have the same rought size of values
nbi=lastIon-nbid # number of ions
nbb=length(levels(x[[sm_meta$batch]])) # Number of batch(es) = number of levels of factor "batch" (can be =1)
Xn=data.frame(x[,c(1:nbid)],matrix(0,nrow=nrow(x),ncol=nbi))# initialisation of the corrected dataframe (=initial dataframe)
dimnames(Xn)=dimnames(x)
cv=data.frame(matrix(NA,nrow=nbi,ncol=2))# initialisation of dataframe containing CV before and after correction
dimnames(cv)[[2]]=c("avant","apres")
if (detail!="reg" && detail!="plot" && detail!="no") {detail="no"}
pdf(outlog,width=27,height=20)
cat(nbi," ions ",nbb," batch(es) \n")
if (detail=="plot") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}}
res.ind <- matrix(NA,ncol=nbb,nrow=nbi,dimnames=list(dimnames(x)[[2]][-c(1:nbid)],paste("norm.b",1:nbb,sep="")))
for (p in 1:nbi) {# for each ion
labion=dimnames(x)[[2]][p+nbid]
pools1=x[indpool,p+nbid]
if(length(which(pools1[!(is.na(pools1))]>0))<2){ # if not enough pools >0 -> no normalisation
war.note <- paste("Warning: less than 2 pools with values >0 in",labion,"-> no normalisation for this ion.")
cat(war.note,"\n")
Xn[,p+nbid] <- x[,p+nbid]
res.ind[p,] <- rep(0,nbb)
if (detail=="reg" || detail=="plot" ) {
par(mfrow=c(2,2),ask=F,cex=1.5)
plot.new()
legend("center",war.note)
minval=min(x[p+nbid],na.rm=TRUE);maxval=max(x[p+nbid],na.rm=TRUE)
plot( x[[sm_meta$injectionOrder]], x[,p+nbid],col=x[[sm_meta$batch]],ylab=labion,ylim=c(minval,maxval),
main="No correction",xlab="injection order")
points(x[[sm_meta$injectionOrder]][indpool],x[indpool,p+nbid],col="maroon",pch=16,cex=1)
}
} else {
if (detail == "reg") {if(nbb<6){par(mfrow=c(3,3),ask=F,cex=1.5)}else{par(mfrow=c(4,4),ask=F,cex=1.5)}}
if (detail == "plot") {par(mfrow=c(2,2),ask=F,cex=1.5)}
cv[p,1]=sd(pools1,na.rm=TRUE)/mean(pools1,na.rm=TRUE)# CV before correction
for (b in 1:nbb) {# for every batch
indbt = which(x[[sm_meta$batch]]==(levels(x[[sm_meta$batch]])[b])) # subscripts of all samples
sub=data.frame(x[(x[[sm_meta$batch]]==levels(x[[sm_meta$batch]])[b]),c(indtypsamp,indinject,p+nbid)])
if (method=="linear") { res.norm = normlinear(sub,detail,valref[p],b,valNull,sm_meta,min_norm)
} else { if (method=="loess"){ res.norm <- normloess(sub,detail,valref[p],b,span,valNull,sm_meta,min_norm)
} else { if (method=="lowess"){ res.norm <- normlowess(sub,detail,valref[p],b,span,valNull,sm_meta,min_norm)
} else {stop("\n--\nNo valid 'method' argument supplied.\nMust be 'linear','loess' or 'lowess'.\n--\n")}
}}
Xn[indbt,p+nbid] = res.norm[[1]]
res.ind[p,b] <- res.norm[[2]]
}
# Post correction CV calculation
pools2=Xn[indpool,p+nbid]
cv[p,2]=sd(pools2,na.rm=TRUE)/mean(pools2,na.rm=TRUE)
if (detail=="reg" || detail=="plot" ) {
# plot before and after correction
minval=min(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE);maxval=max(cbind(x[p+nbid],Xn[p+nbid]),na.rm=TRUE)
plot( x[[sm_meta$injectionOrder]], x[,p+nbid],col=x[[sm_meta$batch]],ylab=labion,ylim=c(minval,maxval),
main=paste0("before correction (CV for pools = ",round(cv[p,1],2),")"),xlab="injection order")
points(x[[sm_meta$injectionOrder]][indpool],x[indpool,p+nbid],col="maroon",pch=16,cex=1)
plot(Xn[[sm_meta$injectionOrder]],Xn[,p+nbid],col=x[[sm_meta$batch]],ylab="",ylim=c(minval,maxval),
main=paste0("after correction (CV for pools = ",round(cv[p,2],2),")"),xlab="injection order")
points(Xn[[sm_meta$injectionOrder]][indpool],Xn[indpool,p+nbid],col="maroon",pch=16,cex=1)
suppressWarnings(plot.design( x[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect before correction"))
suppressWarnings(plot.design(Xn[c(indtypsamp,indbatch,indfact,p+nbid)],main="factors effect after correction"))
}
}
}
if (detail=="reg" || detail=="plot" || detail=="no") {
if (nbi > 3) {
# Sum of ions before/after plot
par(mfrow=c(1,2),ask=F,cex=1.2)
xsum <- rowSums(x[,(nbid+1):lastIon],na.rm=TRUE)
Xnsum <- rowSums(Xn[,(nbid+1):lastIon],na.rm=TRUE)
plot(x[[sm_meta$injectionOrder]],xsum,col=x[[sm_meta$batch]],ylab="sum of variables' intensities",xlab="injection order",
ylim=c(min(c(xsum,Xnsum),na.rm=TRUE),max(c(xsum,Xnsum),na.rm=TRUE)),main="Sum of intensities\nBefore correction")
points(x[[sm_meta$injectionOrder]][indpool],xsum[indpool],col="maroon",pch=16,cex=1.2)
plot(x[[sm_meta$injectionOrder]],Xnsum,col=x[[sm_meta$batch]],ylab="sum of variables' intensities",xlab="injection order",
ylim=c(min(c(xsum,Xnsum),na.rm=TRUE),max(c(xsum,Xnsum),na.rm=TRUE)),main="Sum of intensities\nAfter correction")
points(x[[sm_meta$injectionOrder]][indpool],Xnsum[indpool],col="maroon",pch=16,cex=1.2)
# PCA Plot before/after, normed only and ions plot
par(mfrow=c(3,4),ask=F,cex=1.2)
acplight(x[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE)
norm.ion <- which(colnames(Xn)%in%(rownames(res.ind)[which(rowSums(res.ind)>=1)]))
acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,(nbid+1):lastIon)],"uv",TRUE,norm.ion)
if(length(norm.ion)>0){acplight(Xn[,c(indtypsamp,indbatch,indtypsamp,indfact,norm.ion)],"uv",TRUE)}
# Before/after boxplot
par(mfrow=c(1,2),ask=F,cex=1.2)
cvplot=cv[!is.na(cv[[1]])&!is.na(cv[[2]]),]
if(nrow(cvplot)>0){
boxplot(cvplot[[1]],ylim=c(min(cvplot),max(cvplot)),main="CV of pools before correction")
boxplot(cvplot[[2]],ylim=c(min(cvplot),max(cvplot)),main="CV of pools after correction")
}
dev.off()
}
}
if (nbi<=3) {dev.off()}
# transposed matrix is return (format of the initial matrix with ions in rows)
Xr=Xn[,-c(1:nbid)]; dimnames(Xr)[[1]]=Xn[[1]]
Xr=t(Xr) ; Xr <- data.frame(ions=rownames(Xr),Xr)
res.norm[[1]] <- Xr ; res.norm[[2]] <- data.frame(metaion,res.ind) ; res.norm[[3]] <- x[,c(1:nbid)]
names(res.norm) <- c("dataMatrix","variableMetadata","sampleMetadata")
return(res.norm)
}
acplight <- function(ids, scaling="uv", indiv=FALSE,indcol=NULL) {
suppressPackageStartupMessages(library(ade4))
suppressPackageStartupMessages(library(pcaMethods))
# Make a PCA and plot scores and loadings.
# First column must contain samples' identifiers.
# Columns 2 to 4 contain factors to colour the plots.
for (i in 1:3) {
idss <- data.frame(ids)
idss[,i+1] <- as.character(idss[,i+1])
idss[which(is.na(idss[,i+1])),i+1] <- "no_modality"
idss[which(idss[,i+1]=="NA"),i+1] <- "no_modality"
idss[which(idss[,i+1]==""),i+1] <- "no_modality"
classe=as.factor(idss[[i+1]])
idsample=as.character(idss[[1]])
colour=1:length(levels(classe))
ions=as.matrix(idss[,5:dim(idss)[2]])
# Removing ions containing NA (not compatible with standard PCA)
ions=t(na.omit(t(ions)))
if(i==1){if(ncol(ions)!=(ncol(idss)-4)){cat("Note:",(ncol(idss)-4)-ncol(ions),"ions were ignored for PCA display due to NA in intensities.\n")}}
# Scaling choice: "uv","none","pareto"
object=suppressWarnings(prep(ions, scale=scaling, center=TRUE))
if(i==1){if(length(which(apply(ions,2,var)==0))>0){cat("Warning: there are",length(which(apply(ions,2,var)==0)),"constant ions.\n")}}
# ALGO: nipals,svdImpute, Bayesian, svd, probalistic=F
result <- pca(object, center=F, method="svd", nPcs=2)
# ADE4 : to plot samples' ellipsoid for each class
s.class(result@scores, classe, cpoint = 1,xax=1,yax=2,col=colour,sub=sprintf("Scores - PCs %sx%s",1,2), possub="bottomright")
#s.label(result@loadings,label = ions, cpoint = 0, clabel=0.4, xax=1,yax=2,sub="Loadings",possub="bottomright")
if(i==1){resulti <- result}
}
if(indiv) {
colour <- rep("darkblue",length(resulti@loadings)) ; if(!is.null(indcol)) {colour[-c(indcol)] <- "red"}
plot(resulti@loadings,col=colour,main="Loadings",xaxt="n",yaxt="n",pch=20,
xlab=bquote(PC1-R^2==.(resulti@R2[1])),ylab=bquote(PC2 - R^2 == .(resulti@R2[2])))
abline(h=0,v=0)}
}