-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
383 lines (319 loc) · 15.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import os
import copy
import time
import random
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from models.parallel import DataParallelModel, DataParallelCriterion
from models.mobilenetv2 import MobileNetV2
from cfg.mobilenetv2_config import Config
from utils import CosineAnnealingWarmupRestarts, GradualWarmupScheduler
def set_random_seeds(random_seed, use_multi_gpu=False):
'''Set random seeds.
Args:
random_seed (int): random seed to fix randomness
'''
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
if use_multi_gpu:
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def load_data(data_dir, dataset='cifar10', batch_size=128):
'''Load dataset.
Args:
data_dir (str): dataset path to load dataset
dataset (int): dataset number (e.g. 0: CIFAR-10, 1: CIFAR-100)
Returns:
dataloaders (dict): data loaders for training and validation
dataset_sizes (dict): each dataset size
'''
if 'cifar' in dataset:
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]),
}
elif dataset == 'imagenet':
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
]),
}
else:
assert False, 'You choose wrong dataset.'
# Download or load image datasets
if dataset == 'cifar10':
image_datasets = {x: datasets.CIFAR10(root='./data',
train=True if x == 'train' else False,
download=True, transform=data_transforms[x])
for x in ['train', 'val']}
elif dataset == 'cifar100':
image_datasets = {x: datasets.CIFAR100(root='./data',
train=True if x == 'train' else False,
download=True, transform=data_transforms[x])
for x in ['train', 'val']}
elif dataset == 'imagenet':
image_datasets = {x: datasets.ImageFolder(root=f'./data/imagenet/{x}',
transform=data_transforms[x])
for x in ['train', 'val']}
else:
assert False, 'Invalid Dataset.'
# Create dataloaders
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=True if x == 'train' else False,
num_workers=6)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
return dataloaders, dataset_sizes
def load_model(device, width_mult=1.0, use_res_connect=True, linear_bottleneck=True,
res_loc=0, num_classes=10, pretrained_path='', use_multi_gpu=False,
inverted_residual_setting=[], first_layer_stride=1, lr=0.1, t_max=200, eta_min=0):
'''Load model, loss function, optimizer and scheduler.
Args:
device (obj): device object for cpu or gpu
width_mult (float): multilplier value
use_res_connect (bool): whether to use residual connection or not
linear_bottleneck (bool): whether to use linear bottleneck or not
res_loc (int): residual location
e.g. 0: between bottlenecks, 1: between expansions,
2: between depthwise layers
num_classes (int): the number of classes
pretrained_path (str): pretrained model path for transfer learning
Returns:
model (obj): loaded model
criterion (obj): loss function
optimizer (obj): optimizer (e.g. SGD, RMSprop)
scheduler (obj): learning scheduler (e.g. Step, Cosine Annealing)
'''
model = MobileNetV2(num_classes=num_classes,
width_mult=width_mult,
use_res_connect=use_res_connect,
linear_bottleneck=linear_bottleneck,
res_loc=res_loc,
inverted_residual_setting=inverted_residual_setting,
first_layer_stride=first_layer_stride)
# Device Settings (Single GPU or Multi-GPU)
if use_multi_gpu:
model = DataParallelModel(model).to(device)
criterion = DataParallelCriterion(nn.CrossEntropyLoss())
else:
model = model.to(device)
criterion = nn.CrossEntropyLoss()
if pretrained_path:
model.load_state_dict(torch.load(pretrained_path))
# optimizer = optim.RMSprop(model.parameters(), lr=0.045, momentum=0.9, weight_decay=0.00004)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=4e-5)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=t_max, eta_min=eta_min)
# scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=5, after_scheduler=scheduler)
# scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
# scheduler = CosineAnnealingWarmupRestarts(optimizer,
# first_cycle_steps=150,
# cycle_mult=1.0,
# max_lr=lr,
# min_lr=0.0,
# warmup_steps=5,
# gamma=1.0)
return model, criterion, optimizer, scheduler
def train_model(dataloaders, dataset_sizes, device,
model, criterion, optimizer, scheduler,
save_model, model_dir, save_acc, save_loss,
result_dir, num_epochs=200, use_multi_gpu=False):
'''Train and evaluate model.
Args:
dataloaders (dict): data loaders for training and validation
dataset_sizes (dict): each dataset size
device (obj): device object for cpu or gpu
model (obj): loaded model
criterion (obj): loss function
optimizer (obj): optimizer (e.g. SGD, RMSprop)
scheduler (obj): learning scheduler (e.g. Step, Cosine Annealing)
save_model (bool) whether to save model or not
model_dir (str): path to save model
save_acc (bool): whether to save model accuracy or not
result_dir (str): path to save accruacy
num_epochs (int): the number of epochs
Returns:
model (obj): trained model
'''
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_opt_wts = copy.deepcopy(optimizer.state_dict())
best_acc = 0.0
running_losses, running_accs = [], []
id = round(time.time())
for epoch in range(num_epochs):
print('\nEpoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
batch_size = inputs.size(0)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Prediction
if use_multi_gpu:
outputs, gathered_outputs = model(inputs)
_, preds = torch.max(gathered_outputs, 1)
else:
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
# Calculate a loss
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_losses.append(loss.item())
running_corrects += torch.sum(preds == labels.data)
running_acc = torch.sum(preds == labels.data).double() / batch_size
running_accs.append(running_acc.item())
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
best_opt_wts = copy.deepcopy(optimizer.state_dict())
if save_model:
if not os.path.isdir(model_dir):
os.mkdir(model_dir)
torch.save(model.state_dict(), f'{model_dir}/mobilenetv2_{id}_{epoch}')
torch.save(best_opt_wts, f'{model_dir}/mobilenetv2_{id}_opt_{epoch}')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
# save best model weights
if save_model:
if not os.path.isdir(model_dir):
os.mkdir(model_dir)
torch.save(model.state_dict(), f'{model_dir}/mobilenetv2_{id}_best')
torch.save(best_opt_wts, f'{model_dir}/mobilenetv2_{id}_opt_best')
# save accruacies
# https://www.geeksforgeeks.org/graph-plotting-in-python-set-1/
if save_acc:
if not os.path.isdir(result_dir):
os.mkdir(result_dir)
steps = range(len(running_accs))
# plotting the points
plt.plot(steps, running_accs)
# naming the x and y axis
plt.xlabel('Steps')
plt.ylabel('Accruacy')
# giving a title to my graph
plt.title('Training Results')
plt.savefig(f'{result_dir}/acc_{id}.png')
plt.clf() # https://www.activestate.com/resources/quick-reads/how-to-clear-a-plot-in-python/
with open(f'{result_dir}/acc_{id}.txt', 'w') as f:
f.write('\n'.join(list(map(str, running_accs))))
if save_loss:
# For Loss
steps = range(len(running_losses))
# plotting the points
plt.plot(steps, running_losses)
# naming the x and y axis
plt.xlabel('Steps')
plt.ylabel('Loss')
# giving a title to my graph
plt.title('Training Results')
plt.savefig(f'{result_dir}/loss_{id}.png')
with open(f'{result_dir}/loss_{id}.txt', 'w') as f:
f.write('\n'.join(list(map(str, running_losses))))
return model
if __name__ == '__main__':
# Parse arguments
parser = argparse.ArgumentParser(description='Train MobileNetV2')
parser.add_argument('--data_dir', type=str, help='Path of input data', default='./data')
parser.add_argument('--dataset', type=str, help='cifar10, cifar100, imagenet', default='cifar10')
parser.add_argument('--save_model', action='store_true', help='Whether to save model or not')
parser.add_argument('--pretrained_path', type=str, help='Path of model to save', default='')
parser.add_argument('--model_dir', type=str, help='Path of model to save', default='./trained_models')
parser.add_argument('--save_acc', action='store_true', help='Whether to save accruacies or not')
parser.add_argument('--save_loss', action='store_true', help='Whether to save losses or not')
parser.add_argument('--result_dir', type=str, help='Path of results to save', default='./results')
parser.add_argument('--width_mult', type=float, help='Width for multiplier', default=1.0)
parser.add_argument('--use_res_connect', action='store_true', help='Whether to use residual connection or not')
parser.add_argument('--res_loc', type=int, help='Location of residual connections (e.g. Between bottlenecks -> 0', default=0)
parser.add_argument('--linear_bottleneck', action='store_true', help='Whether to use Linear Bottlenck or not')
parser.add_argument('--epoch', type=int, help='Epoch', default=200)
parser.add_argument('--random_seed', type=int, help='Random seed for reproducibility', default=0)
parser.add_argument('--batch_size', type=int, help='Batch Size', default=128)
parser.add_argument('--print_to_file', action='store_true', help='Whether to print results or not')
parser.add_argument('--use_multi_gpu', action='store_true', help='Whether to use multi-gpu or not')
parser.add_argument('--lr', type=float, help='Learning rate', default=0.1)
parser.add_argument('--t_max', type=int, help='T_max for cosine annealing', default=200)
parser.add_argument('--eta_min', type=float, help='eta_min for cosine annealing', default=0.0)
args = parser.parse_args()
cfg = Config(args.dataset)
# Set print function
from utils import init_file_for_print, set_print_to_file
id = round(time.time())
init_file_for_print(id)
print = set_print_to_file(print, args.print_to_file, id)
# Set Random Seeds
set_random_seeds(args.random_seed, args.use_multi_gpu)
# Load dataset
dataloaders, dataset_sizes = load_data(args.data_dir, args.dataset, args.batch_size)
# Load MobileNetV2
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model, criterion, optimizer, scheduler = load_model(device, args.width_mult,
args.use_res_connect,
args.linear_bottleneck,
args.res_loc,
cfg.num_cls,
args.pretrained_path,
args.use_multi_gpu,
cfg.inverted_residual_setting,
cfg.first_layer_stride,
args.lr, args.t_max, args.eta_min)
# Train MobileNetV2
model = train_model(dataloaders, dataset_sizes, device,
model, criterion, optimizer, scheduler,
args.save_model, args.model_dir,
args.save_acc, args.save_loss, args.result_dir,
args.epoch, args.use_multi_gpu)