-
Notifications
You must be signed in to change notification settings - Fork 4
/
eval_metrics.py
152 lines (122 loc) · 5.23 KB
/
eval_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
def eval_sysu(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=20):
"""
Evaluation with SYSU-MM01 metric.
Note: For each query identity, its gallery images from the same camera view are discarded,
which follows the original setting in "RGB-Infrared Cross-Modality Person Re-Identificatio, ICCV 2017".
"""
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
pred_label = g_pids[indices]
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
new_all_cmc = []
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (q_camid == 3) & (g_camids[order] == 2)
keep = np.invert(remove)
# compute cmc curve
# the cmc calculation is different from standard protocol
# we follow the protocol of the author's released code
new_cmc = pred_label[q_idx][keep]
new_index = np.unique(new_cmc, return_index=True)[1]
new_cmc = [new_cmc[index] for index in sorted(new_index)]
new_match = (new_cmc == q_pid).astype(np.int32)
new_cmc = new_match.cumsum()
new_all_cmc.append(new_cmc[:max_rank])
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
# compute mINP
# refernece Deep Learning for Person Re-identification: A Survey and Outlook
pos_idx = np.where(orig_cmc == 1)
pos_max_idx = np.max(pos_idx)
inp = cmc[pos_max_idx] / (pos_max_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q # standard CMC
new_all_cmc = np.asarray(new_all_cmc).astype(np.float32)
new_all_cmc = new_all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return new_all_cmc, mAP, mINP
def eval_regdb(distmat, q_pids, g_pids, max_rank=20):
"""
Evaluation with RegDB metric.
"""
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid query
# only two cameras
q_camids = np.ones(num_q).astype(np.int32)
g_camids = 2 * np.ones(num_g).astype(np.int32)
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
raw_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(raw_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = raw_cmc.cumsum()
# compute mINP
# refernece Deep Learning for Person Re-identification: A Survey and Outlook
pos_idx = np.where(raw_cmc == 1)
pos_max_idx = np.max(pos_idx)
inp = cmc[pos_max_idx] / (pos_max_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return all_cmc, mAP, mINP