-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifierDepth_Heat.py
352 lines (282 loc) · 11.5 KB
/
classifierDepth_Heat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
class IplROI(Structure):
pass
class IplTileInfo(Structure):
pass
class IplImage(Structure):
pass
IplImage._fields_ = [
('nSize', c_int),
('ID', c_int),
('nChannels', c_int),
('alphaChannel', c_int),
('depth', c_int),
('colorModel', c_char * 4),
('channelSeq', c_char * 4),
('dataOrder', c_int),
('origin', c_int),
('align', c_int),
('width', c_int),
('height', c_int),
('roi', POINTER(IplROI)),
('maskROI', POINTER(IplImage)),
('imageId', c_void_p),
('tileInfo', POINTER(IplTileInfo)),
('imageSize', c_int),
('imageData', c_char_p),
('widthStep', c_int),
('BorderMode', c_int * 4),
('BorderConst', c_int * 4),
('imageDataOrigin', c_char_p)]
class iplimage_t(Structure):
_fields_ = [('ob_refcnt', c_ssize_t),
('ob_type', py_object),
('a', POINTER(IplImage)),
('data', py_object),
('offset', c_size_t)]
NUM_SAMPLES_FILTER = 10
# SYSTEM SETUP:
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
lib = CDLL("./models/libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
#SUPPORTING FUNCTIONS:
def sample(probs):
s = sum(probs)
probs = [a/s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs)-1
def c_array(ctype, values):
arr = (ctype*len(values))()
arr[:] = values
return arr
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
#Converts a input frame to a array of pixels:
def array_to_image(arr):
# need to return old values to avoid python freeing memory
arr = arr.transpose(2,0,1)
c, h, w = arr.shape[0:3]
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
data = arr.ctypes.data_as(POINTER(c_float))
im = IMAGE(w,h,c,data)
return im, arr
# def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
# """if isinstance(image, bytes):
# # image is a filename
# # i.e. image = b'/darknet/data/dog.jpg'
# im = load_image(image, 0, 0)
# else:
# # image is an nparray
# # i.e. image = cv2.imread('/darknet/data/dog.jpg')
# im, image = array_to_image(image)
# rgbgr_image(im)
# """
# im, image = array_to_image(image)
# rgbgr_image(im)
# num = c_int(0)
# pnum = pointer(num)
# predict_image(net, im)
# dets = get_network_boxes(net, im.w, im.h, thresh,
# hier_thresh, None, 0, pnum)
# num = pnum[0]
# if nms: do_nms_obj(dets, num, meta.classes, nms)
# res = []
# for j in range(num):
# a = dets[j].prob[0:meta.classes]
# if any(a):
# ai = np.array(a).nonzero()[0]
# for i in ai:
# b = dets[j].bbox
# res.append((meta.names[i], dets[j].prob[i],
# (b.x, b.y, b.w, b.h)))
# res = sorted(res, key=lambda x: -x[1])
# if isinstance(image, bytes): free_image(im)
# free_detections(dets, num)
# return res
def predictFrames(net, meta, videoSource, thresh=.8, hier_thresh=.5, nms=.45):
#Store the depths, x's, and y's
depth = []
x = []
y = []
labels = []
label_num = []
#Colours to draw on GUI with
classes_box_colors = [(0, 0, 255), (0, 255, 0)]
classes_font_colors = [(255, 255, 0), (0, 255, 255)]
#Wait for a coherent pair of frames: depth and color
frames = videoSource.poll_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame and not color_frame:
return x, y, labels, label_num,depth, color_frame #Return null
# # Convert images to numpy arrays
depth_arr = np.asanyarray(depth_frame.get_data())
color_arr = np.asanyarray(color_frame.get_data())
#Convert the input frame to a array of pixels
im, arr = array_to_image(color_arr)
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): do_nms_obj(dets, num, meta.classes, nms);
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0: #Detection threshold
b = dets[j].bbox
x.append(b.x)
y.append(b.y)
labels.append(meta.names[i].decode('utf-8'))
label_num.append(i)
#Calculate corners of bounding box
x1 = int(b.x - b.w / 2.)
y1 = int(b.y - b.h / 2.)
x2 = int(b.x + b.w / 2.)
y2 = int(b.y + b.h / 2.)
#Draw bounding box on image and add label
cv.rectangle(color_arr, (x1, y1), (x2, y2), classes_box_colors[0], 2)
cv.putText(color_arr, meta.names[i].decode('utf-8'), (x1, y1 - 20), 1, 1, classes_font_colors[0], 2, cv.LINE_AA)
#Get distance to bounding box centroid
depth.append(depth_frame.get_distance(int(b.x),int(b.y)))
cv.imshow('output', color_arr)
cv.imshow('depth', depth_arr)
if cv.waitKey(1) == ord('q'):
return
return x,y,depth,labels,label_num,color_arr
# Get the target depth
def getTarget(pipeD435, net, meta, guiShow):
#Network will make predictions on each frame
x,y,depth,labels,label_num,frame = predictFrames(net, meta, pipeD435)
#Calculate angle between camera origin and the centroid of bounding box
theta = []
for i in range(len(x)):
theta.append(x[i] /600*87-87.0/2)
if (theta[i] < 0): theta[i] += 360
if (theta[i] > 180): theta[i] = theta[i] - 360
detections = [x,y,depth,theta,labels,label_num]
return(detections)
# Generate semantic map
def mapGenerator(detections, intr, frameFilter):
plt.ion()
plt.grid(color='r', linestyle='-', linewidth=2)
plt.axis([-2.5,2.5,0,5])
for i in range(0,len(detections[0])):
#Transform x,y,depth coordinates to new xyz:
cxy = [detections[0][i], detections[1][i]]
depth = detections[2][i]
point = rs.rs2_deproject_pixel_to_point(intr, cxy, depth) #Outputs xyz in cameras reference frame in 3D space
#Display map:
if len(point) != 0:
p=plt.plot(point[1], point[2],marker='o',label=detections[4][i])
plt.text(point[1],point[2],detections[4][i])
fig.canvas.draw()
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
img = cv.cvtColor(img,cv.COLOR_RGB2BGR)
#img2 = cv.createMat(640,480,frameFilter)
#img2=np.array(frameFilter,dtype=np.uint8)
#img2=cv.adaptiveThreshold(frameFilter,1,cv.ADAPTIVE_THRESH_MEAN_C,cv.THRESH_BINARY,3,0)
cv.imshow("Labelled Map",img)
cv.imshow("Heat map",frameFilter)
plt.clf()
plt.ioff()
#ADDD make it so you have "persistence" in the map, everytime a object at a specific x,y (+/- 10 pix) you
#increment a count (x,y,depth,label,count) for that object and if count > thresh then draw it on the map, otherwise do
#not draw it on the map
#ADD Make sure this plot is slowing FPS to much
if __name__ == "__main__":
#Set to 0 to turn off GUI's:
guiShow = 1
#Load YOLOv3:
net = load_net("./models/cfg/yolov3.cfg".encode('utf-8'), "./models/weights/yolov3.weights".encode('utf-8'), 0)
meta = load_meta("./models/cfg/coco.data".encode('utf-8'))
#print(meta.names[79])
#Init D435i camera pipeline:
pipeD435 = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
cfg = pipeD435.start(config)
profile = cfg.get_stream(rs.stream.depth) # Fetch stream profile for depth stream
intr = profile.as_video_stream_profile().get_intrinsics() # Downcast to video_stream_profile and fetch intrinsics
fig = plt.figure() #Figure for plotting the map
storedDetections = [10] #Store the most recent detections
frameFilter = np.zeros((480,640,80,NUM_SAMPLES_FILTER)) #3D numpy array that is the image size (w,h) by the number of classes
#While camera is on perform detection and mapping:
counter = 0
while pipeD435.poll_for_frames:
counter=counter+1
if counter >NUM_SAMPLES_FILTER-1:
counter =0
np.delete(frameFilter,0,axis=3)
np.append(frameFilter,np.zeros((480,640,80))
#Localize detected objects:
detections = getTarget(pipeD435, net, meta, guiShow) #Return contains array of [x,y,depth,theta,label] for each detected object
for i in range(len(detections[0])):
frameFilter[int(detections[1][i])][int(detections[0][i])][int(detections[5][i])][counter] = 1
newframeFilter=frameFilter.sum(axis=3) #sum across the 10 samples (4th axis of the 4-d array)
newframeFilter=newframeFilter.sum(axis=2) #sum across the labels
#storedDetections.append(detections)
#Remove excess detections
# if len(storedDetections) > 10:
# storedDetections.remove(0)
#Average the detected points, remove noise
#Create Semantic map:
if len(detections[0]) !=0: mapGenerator(detections, intr, newframeFilter)
#ADD a def __init__ like in micamove.py and use multiple threads to handle network pred and mapping at the same time