-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiverse_cotraining_3cps.py
366 lines (297 loc) · 19.4 KB
/
diverse_cotraining_3cps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import logging
import os
import pprint
import torch
from torch import nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD, AdamW
from torch.utils.data import DataLoader
import yaml
from dataset.semi_dct import SemiDatasetDCT
from dataset.semi import SemiDataset
from model.semseg.segmentor import Segmentor
from supervised import evaluate
from supervised_dct import evaluate as evaluate_dct
from util.classes import CLASSES
from util.ohem import ProbOhemCrossEntropy2d
from util.utils import count_params, init_log
from util.dist_helper import setup_distributed
parser = argparse.ArgumentParser(description='Semi-Supervised Semantic Segmentation')
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--config2', type=str, required=True)
parser.add_argument('--config3', type=str, required=True)
parser.add_argument('--labeled-id-path', type=str, required=True)
parser.add_argument('--unlabeled-id-path', type=str, required=True)
parser.add_argument('--save-path', type=str, required=True)
parser.add_argument('--local_rank', '--local-rank', default=0, type=int)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--thr', default=0.95, type=float)
parser.add_argument('--uw', default=1.0, type=float)
parser.add_argument('--amp', action="store_true")
def main():
args = parser.parse_args()
cfg = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
cfg2 = yaml.load(open(args.config2, "r"), Loader=yaml.Loader)
cfg3 = yaml.load(open(args.config3, "r"), Loader=yaml.Loader)
cfg['conf_thresh'] = args.thr
logger = init_log('global', logging.INFO)
logger.propagate = 0
rank, word_size = setup_distributed(port=args.port)
if rank == 0:
all_args = {**cfg, **vars(args), 'ngpus': word_size}
logger.info('{}\n'.format(pprint.pformat(all_args)))
if rank == 0:
os.makedirs(args.save_path, exist_ok=True)
cudnn.enabled = True
cudnn.benchmark = True
model1 = Segmentor(cfg)
model2 = Segmentor(cfg2)
model3 = Segmentor(cfg3)
if rank == 0:
logger.info('Total params: {:.1f}M\n'.format(count_params(model1)))
param_groups1 = [{'params': model1.backbone.parameters(), 'lr': cfg['lr']},
{'params': [param for name, param in model1.named_parameters() if 'backbone' not in name],
'lr': cfg['lr'] * cfg['lr_multi']}]
param_groups2 = [{'params': model2.backbone.parameters(), 'lr': cfg['lr']},
{'params': [param for name, param in model2.named_parameters() if 'backbone' not in name],
'lr': cfg['lr'] * cfg['lr_multi']}]
param_groups3 = [{'params': model3.backbone.parameters(), 'lr': cfg['lr']},
{'params': [param for name, param in model3.named_parameters() if 'backbone' not in name],
'lr': cfg['lr'] * cfg['lr_multi']}]
if cfg["optim"] == "SGD":
optimizer1 = SGD(param_groups1, lr=cfg['lr'], momentum=0.9, weight_decay=1e-4)
elif cfg["optim"] == "AdamW":
optimizer1 = AdamW(param_groups1, lr=cfg['lr'], weight_decay=0.01, betas=(0.9, 0.999))
if cfg2["optim"] == "SGD":
optimizer2 = SGD(param_groups2, lr=cfg['lr'], momentum=0.9, weight_decay=1e-4)
elif cfg2["optim"] == "AdamW":
optimizer2 = AdamW(param_groups2, lr=cfg['lr'], weight_decay=0.01, betas=(0.9, 0.999))
if cfg3["optim"] == "SGD":
optimizer3 = SGD(param_groups3, lr=cfg['lr'], momentum=0.9, weight_decay=1e-4)
elif cfg3["optim"] == "AdamW":
optimizer3 = AdamW(param_groups3, lr=cfg['lr'], weight_decay=0.01, betas=(0.9, 0.999))
local_rank = int(os.environ["LOCAL_RANK"])
model1 = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model1).cuda()
model2 = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model2).cuda()
model3 = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model3).cuda()
model1 = torch.nn.parallel.DistributedDataParallel(model1, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=False)
model2 = torch.nn.parallel.DistributedDataParallel(model2, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=False)
model3 = torch.nn.parallel.DistributedDataParallel(model3, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=False)
if cfg['criterion']['name'] == 'CELoss':
criterion_l = nn.CrossEntropyLoss(**cfg['criterion']['kwargs']).cuda(local_rank)
elif cfg['criterion']['name'] == 'OHEM':
criterion_l = ProbOhemCrossEntropy2d(**cfg['criterion']['kwargs']).cuda(local_rank)
else:
raise NotImplementedError('%s criterion is not implemented' % cfg['criterion']['name'])
criterion_u = nn.CrossEntropyLoss(reduction='none').cuda(local_rank)
trainset_u = SemiDatasetDCT(cfg['dataset'], cfg['data_root'], 'train_u',
cfg['crop_size'], args.unlabeled_id_path)
trainset_l = SemiDatasetDCT(cfg['dataset'], cfg['data_root'], 'train_l',
cfg['crop_size'], args.labeled_id_path, nsample=len(trainset_u.ids))
valset = SemiDataset(cfg['dataset'], cfg['data_root'], 'val')
valset_dct = SemiDatasetDCT(cfg['dataset'], cfg['data_root'], 'val')
trainsampler_l = torch.utils.data.distributed.DistributedSampler(trainset_l)
trainloader_l = DataLoader(trainset_l, batch_size=cfg['batch_size'],
pin_memory=True, num_workers=2, drop_last=True, sampler=trainsampler_l)
trainsampler_u = torch.utils.data.distributed.DistributedSampler(trainset_u)
trainloader_u = DataLoader(trainset_u, batch_size=cfg['batch_size'],
pin_memory=True, num_workers=2, drop_last=True, sampler=trainsampler_u)
valsampler = torch.utils.data.distributed.DistributedSampler(valset)
valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=2,
drop_last=False, sampler=valsampler)
valsampler_dct = torch.utils.data.distributed.DistributedSampler(valset_dct)
valloader_dct = DataLoader(valset_dct, batch_size=1, pin_memory=True, num_workers=2,
drop_last=False, sampler=valsampler_dct)
total_iters = len(trainloader_u) * cfg['epochs']
previous_best1, previous_best2, previous_best3 = 0.0, 0.0, 0.0
scaler1 = torch.cuda.amp.GradScaler()
scaler2 = torch.cuda.amp.GradScaler()
scaler3 = torch.cuda.amp.GradScaler()
for epoch in range(cfg['epochs']):
if rank == 0:
logger.info('===========> Epoch: {:}, LR: {:.4f}, '
'Previous best1: {:.2f}, Previous best2: {:.2f}, Previous best3: {:.2f}'.format(
epoch, optimizer1.param_groups[0]['lr'], previous_best1, previous_best2, previous_best3))
total_loss_x1, total_loss_s1 = 0.0, 0.0
total_mask_ratio1 = 0.0
total_loss_x2, total_loss_s2 = 0.0, 0.0
total_mask_ratio2 = 0.0
total_agree_ratio_between3 = 0.0
total_agree_ratio_between2 = 0.0
trainloader_l.sampler.set_epoch(epoch)
trainloader_u.sampler.set_epoch(epoch)
loader = zip(trainloader_l, trainloader_u)
for i, ((img_x_dct, img_x, mask_x, img_shape),
(img_u_w, img_u_s, img_u_w_dct, img_u_s_dct, ignore_mask, _, cutmix_box_dct_img, cutmix_box, _, _)) in enumerate(loader):
img_x_dct, img_x, mask_x = img_x_dct.cuda(), img_x.cuda(), mask_x.cuda()
img_u_w, img_u_s = img_u_w.cuda(), img_u_s.cuda()
img_u_w_dct, img_u_s_dct = img_u_w_dct.cuda(), img_u_s_dct.cuda()
ignore_mask, cutmix_box = ignore_mask.cuda(), cutmix_box.cuda()
cutmix_box_dct_img = cutmix_box_dct_img.cuda()
index = torch.randperm(img_u_w.size(0))
img_u_s_mix = img_u_s.clone()[index]
img_u_s_dct_mix = img_u_s_dct.clone()[index]
img_u_s[cutmix_box.unsqueeze(1).expand(img_u_s.shape) == 1] = \
img_u_s_mix[cutmix_box.unsqueeze(1).expand(img_u_s_mix.shape) == 1]
img_u_s_dct[cutmix_box_dct_img.unsqueeze(1).expand(img_u_s_dct.shape) == 1] = \
img_u_s_dct_mix[cutmix_box_dct_img.unsqueeze(1).expand(img_u_s_dct_mix.shape) == 1]
model1.train()
model2.train()
model3.train()
num_lb, num_ulb = img_x.shape[0], img_u_w.shape[0]
with torch.cuda.amp.autocast(enabled=args.amp):
pred_x1, pred_u_w1 = model1(torch.cat((img_x, img_u_w))).split([num_lb, num_ulb])
pred_u_s1 = model1(img_u_s)
pred_x2, pred_u_w2 = model2(torch.cat((img_x_dct, img_u_w_dct)), img_shape[0]).split([num_lb, num_ulb])
pred_u_s2 = model2(img_u_s_dct, img_shape[0])
pred_x3, pred_u_w3 = model3(torch.cat((img_x, img_u_w))).split([num_lb, num_ulb])
pred_u_s3 = model3(img_u_s)
pred_u_w1 = pred_u_w1.detach() # bs, c, h, w
conf_u_w1 = pred_u_w1.softmax(dim=1).max(dim=1)[0]
mask_u_w1 = pred_u_w1.argmax(dim=1) # bs, h, w
pred_u_w2 = pred_u_w2.detach() # bs, c, h, w
conf_u_w2 = pred_u_w2.softmax(dim=1).max(dim=1)[0] # bs, h, w
mask_u_w2 = pred_u_w2.argmax(dim=1) # bs, h, w
pred_u_w3 = pred_u_w3.detach() # bs, c, h, w
conf_u_w3 = pred_u_w3.softmax(dim=1).max(dim=1)[0] # bs, h, w
mask_u_w3 = pred_u_w3.argmax(dim=1) # bs, h, w
mask_u_w_cutmixed1, conf_u_w_cutmixed1 = mask_u_w1.clone(), conf_u_w1.clone()
mask_u_w_cutmixed2, conf_u_w_cutmixed2 = mask_u_w2.clone(), conf_u_w2.clone()
mask_u_w_cutmixed3, conf_u_w_cutmixed3 = mask_u_w3.clone(), conf_u_w3.clone()
ignore_mask_cutmixed1, ignore_mask_cutmixed2, ignore_mask_cutmixed3 = \
ignore_mask.clone(), ignore_mask.clone(), ignore_mask.clone()
mask_u_w_cutmixed1[cutmix_box == 1] = mask_u_w1.clone()[index][cutmix_box == 1]
conf_u_w_cutmixed1[cutmix_box == 1] = conf_u_w1.clone()[index][cutmix_box == 1]
mask_u_w_cutmixed2[cutmix_box == 1] = mask_u_w2.clone()[index][cutmix_box == 1]
conf_u_w_cutmixed2[cutmix_box == 1] = conf_u_w2.clone()[index][cutmix_box == 1]
mask_u_w_cutmixed3[cutmix_box == 1] = mask_u_w3.clone()[index][cutmix_box == 1]
conf_u_w_cutmixed3[cutmix_box == 1] = conf_u_w3.clone()[index][cutmix_box == 1]
ignore_mask_cutmixed1[cutmix_box == 1] = ignore_mask.clone()[index][cutmix_box == 1]
ignore_mask_cutmixed2[cutmix_box == 1] = ignore_mask.clone()[index][cutmix_box == 1]
ignore_mask_cutmixed3[cutmix_box == 1] = ignore_mask.clone()[index][cutmix_box == 1]
loss_x1 = criterion_l(pred_x1, mask_x)
loss_x2 = criterion_l(pred_x2, mask_x)
loss_x3 = criterion_l(pred_x3, mask_x)
# supervise model1 with pred2 and pred3
loss_u_s11 = criterion_u(pred_u_s1, mask_u_w_cutmixed2)
loss_u_s11 = loss_u_s11 * ((conf_u_w_cutmixed2 >= cfg['conf_thresh']) & (ignore_mask_cutmixed1 != 255))
loss_u_s11 = torch.sum(loss_u_s11) / torch.sum(ignore_mask_cutmixed1 != 255).item()
loss_u_s12 = criterion_u(pred_u_s1, mask_u_w_cutmixed3)
loss_u_s12 = loss_u_s12 * ((conf_u_w_cutmixed3 >= cfg['conf_thresh']) & (ignore_mask_cutmixed1 != 255))
loss_u_s12 = torch.sum(loss_u_s12) / torch.sum(ignore_mask_cutmixed1 != 255).item()
loss_u_s1 = (loss_u_s11 + loss_u_s12) / 2.0
# supervise model2 with pred1 and pred3
loss_u_s21 = criterion_u(pred_u_s2, mask_u_w_cutmixed1)
loss_u_s21 = loss_u_s21 * ((conf_u_w_cutmixed1 >= cfg['conf_thresh']) & (ignore_mask_cutmixed2 != 255))
loss_u_s21 = torch.sum(loss_u_s21) / torch.sum(ignore_mask_cutmixed2 != 255).item()
loss_u_s22 = criterion_u(pred_u_s2, mask_u_w_cutmixed3)
loss_u_s22 = loss_u_s22 * ((conf_u_w_cutmixed3 >= cfg['conf_thresh']) & (ignore_mask_cutmixed2 != 255))
loss_u_s22 = torch.sum(loss_u_s22) / torch.sum(ignore_mask_cutmixed2 != 255).item()
loss_u_s2 = (loss_u_s21 + loss_u_s22) / 2.0
# supervise model3 with pred1 and pred2
loss_u_s31 = criterion_u(pred_u_s3, mask_u_w_cutmixed1)
loss_u_s31 = loss_u_s31 * ((conf_u_w_cutmixed1 >= cfg['conf_thresh']) & (ignore_mask_cutmixed3 != 255))
loss_u_s31 = torch.sum(loss_u_s31) / torch.sum(ignore_mask_cutmixed3 != 255).item()
loss_u_s32 = criterion_u(pred_u_s3, mask_u_w_cutmixed2)
loss_u_s32 = loss_u_s32 * ((mask_u_w_cutmixed2 >= cfg['conf_thresh']) & (ignore_mask_cutmixed3 != 255))
loss_u_s32 = torch.sum(loss_u_s32) / torch.sum(ignore_mask_cutmixed3 != 255).item()
loss_u_s3 = (loss_u_s31 + loss_u_s32) / 2.0
loss1 = loss_x1 + args.uw * loss_u_s1
loss2 = loss_x2 + args.uw * loss_u_s2
loss3 = loss_x3 + args.uw * loss_u_s3
torch.distributed.barrier()
optimizer1.zero_grad()
optimizer2.zero_grad()
optimizer3.zero_grad()
if args.amp:
loss1 = scaler1.scale(loss1)
loss2 = scaler2.scale(loss2)
loss3 = scaler3.scale(loss3)
loss = (loss1 + loss2 + loss3) / 3
loss.backward()
scaler1.step(optimizer1)
scaler2.step(optimizer2)
scaler3.step(optimizer3)
scaler1.update()
scaler2.update()
scaler3.update()
else:
loss = (loss1 + loss2 + loss3) / 3
loss.backward()
optimizer1.step()
optimizer2.step()
optimizer3.step()
total_loss_x1 += loss_x1.item()
total_loss_s1 += loss_u_s1.item()
total_mask_ratio1 += ((conf_u_w1 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item() / \
(ignore_mask != 255).sum().item()
total_loss_x2 += loss_x2.item()
total_loss_s2 += loss_u_s2.item()
total_mask_ratio2 += ((conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item() / \
(ignore_mask != 255).sum().item()
total_agree_ratio_between3 += \
(((mask_u_w2 == mask_u_w1) & (mask_u_w2 == mask_u_w3)) * ((conf_u_w1 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (conf_u_w3 >= cfg['conf_thresh']) & (ignore_mask != 255))).sum().item() / \
((conf_u_w1 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item()
agree_ratio12 = ((mask_u_w2 == mask_u_w1) * ((conf_u_w1 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255))).sum().item() / \
((conf_u_w1 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item()
agree_ratio23 = ((mask_u_w2 == mask_u_w3) * ((conf_u_w3 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255))).sum().item() / \
((conf_u_w3 >= cfg['conf_thresh']) & (conf_u_w2 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item()
agree_ratio13 = ((mask_u_w1 == mask_u_w3) * ((conf_u_w3 >= cfg['conf_thresh']) & (conf_u_w1 >= cfg['conf_thresh']) & (ignore_mask != 255))).sum().item() / \
((conf_u_w3 >= cfg['conf_thresh']) & (conf_u_w1 >= cfg['conf_thresh']) & (ignore_mask != 255)).sum().item()
total_agree_ratio_between2 += (agree_ratio12 + agree_ratio13 + agree_ratio23) / 3.0
iters = epoch * len(trainloader_u) + i
lr = cfg['lr'] * (1 - iters / total_iters) ** 0.9
optimizer1.param_groups[0]["lr"] = lr
optimizer1.param_groups[1]["lr"] = lr * cfg['lr_multi']
optimizer2.param_groups[0]["lr"] = lr
optimizer2.param_groups[1]["lr"] = lr * cfg['lr_multi']
optimizer3.param_groups[0]["lr"] = lr
optimizer3.param_groups[1]["lr"] = lr * cfg['lr_multi']
if (i % 50 == 0) and (rank == 0):
logger.info('Iters: {:}, Loss x1: {:.3f}, Loss s1: {:.3f}, Mask1: {:.3f}, '
'Loss x2: {:.3f}, Loss s2: {:.3f}, Mask2: {:.3f}, agree ratio (between 3): {:.3f} agree ratio (between 2): {:.3f}'.format(
i, total_loss_x1 / (i+1), total_loss_s1 / (i+1), total_mask_ratio1 / (i+1),
total_loss_x2 / (i+1), total_loss_s2 / (i+1), total_mask_ratio2 / (i+1), total_agree_ratio_between3 / (i+1), total_agree_ratio_between2 / (i+1)))
torch.cuda.empty_cache()
if cfg['dataset'] == 'cityscapes':
eval_mode = 'sliding_window'
else:
eval_mode = 'original'
mIOU1, iou_class1 = evaluate(model1, valloader, eval_mode, cfg)
mIOU2, iou_class2 = evaluate_dct(model2, valloader_dct, eval_mode, cfg2)
mIOU3, iou_class3 = evaluate(model3, valloader, eval_mode, cfg3)
if rank == 0:
for (cls_idx, iou) in enumerate(iou_class1):
logger.info('***** Evaluation ***** >>>> Class [{:} {:}] IoU1: {:.2f}, '
'IoU2: {:.2f}, IoU3: {:.2f},'.format(cls_idx, CLASSES[cfg['dataset']][cls_idx], iou, iou_class2[cls_idx], iou_class3[cls_idx]))
logger.info('***** Evaluation {} ***** >>>> MeanIoU1: {:.2f}, MeanIoU2: {:.2f}, MeanIoU3: {:.2f}\n'.format(eval_mode, mIOU1, mIOU2, mIOU3))
if mIOU1 > previous_best1 and rank == 0:
if previous_best1 != 0:
pre_path = os.path.join(args.save_path, 'm1_%s_%.2f.pth' % (cfg['backbone'], previous_best1))
if os.path.exists(pre_path):
os.remove(pre_path)
previous_best1 = mIOU1
torch.save(model1.module.state_dict(),
os.path.join(args.save_path, 'm1_%s_%.2f.pth' % (cfg['backbone'], mIOU1)))
if mIOU2 > previous_best2 and rank == 0:
if previous_best2 != 0:
pre_path = os.path.join(args.save_path, 'm2_%s_%.2f.pth' % (cfg['backbone'], previous_best2))
if os.path.exists(pre_path):
os.remove(pre_path)
previous_best2 = mIOU2
torch.save(model2.module.state_dict(),
os.path.join(args.save_path, 'm2_%s_%.2f.pth' % (cfg['backbone'], mIOU2)))
if mIOU3 > previous_best3 and rank == 0:
if previous_best3 != 0:
pre_path = os.path.join(args.save_path, 'm3_%s_%.2f.pth' % (cfg['backbone'], previous_best3))
if os.path.exists(pre_path):
os.remove(pre_path)
previous_best3 = mIOU3
torch.save(model3.module.state_dict(),
os.path.join(args.save_path, 'm3_%s_%.2f.pth' % (cfg['backbone'], mIOU3)))
if __name__ == '__main__':
main()