forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
121 lines (100 loc) · 3.61 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains common flags and functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import locale
import os
from absl import logging
import numpy as np
import tensorflow as tf
def get_seq_middle(seq_length):
"""Returns relative index for the middle frame in sequence."""
half_offset = int((seq_length - 1) / 2)
return seq_length - 1 - half_offset
def info(obj):
"""Return info on shape and dtype of a numpy array or TensorFlow tensor."""
if obj is None:
return 'None.'
elif isinstance(obj, list):
if obj:
return 'List of %d... %s' % (len(obj), info(obj[0]))
else:
return 'Empty list.'
elif isinstance(obj, tuple):
if obj:
return 'Tuple of %d... %s' % (len(obj), info(obj[0]))
else:
return 'Empty tuple.'
else:
if is_a_numpy_array(obj):
return 'Array with shape: %s, dtype: %s' % (obj.shape, obj.dtype)
else:
return str(obj)
def is_a_numpy_array(obj):
"""Returns true if obj is a numpy array."""
return type(obj).__module__ == np.__name__
def count_parameters(also_print=True):
"""Cound the number of parameters in the model.
Args:
also_print: Boolean. If True also print the numbers.
Returns:
The total number of parameters.
"""
total = 0
if also_print:
logging.info('Model Parameters:')
for v in get_vars_to_restore():
shape = v.get_shape()
if also_print:
logging.info('%s %s: %s', v.op.name, shape,
format_number(shape.num_elements()))
total += shape.num_elements()
if also_print:
logging.info('Total: %s', format_number(total))
return total
def get_vars_to_restore(ckpt=None):
"""Returns list of variables that should be saved/restored.
Args:
ckpt: Path to existing checkpoint. If present, returns only the subset of
variables that exist in given checkpoint.
Returns:
List of all variables that need to be saved/restored.
"""
model_vars = tf.trainable_variables()
# Add batchnorm variables.
bn_vars = [v for v in tf.global_variables()
if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name]
model_vars.extend(bn_vars)
model_vars = sorted(model_vars, key=lambda x: x.op.name)
if ckpt is not None:
ckpt_var_names = tf.contrib.framework.list_variables(ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names]
for v in model_vars:
if v.op.name not in ckpt_var_names:
logging.warn('Missing var %s in checkpoint: %s', v.op.name,
os.path.basename(ckpt))
model_vars = [v for v in model_vars if v.op.name in ckpt_var_names]
return model_vars
def format_number(n):
"""Formats number with thousands commas."""
locale.setlocale(locale.LC_ALL, 'en_US')
return locale.format('%d', n, grouping=True)
def read_text_lines(filepath):
with open(filepath, 'r') as f:
lines = f.readlines()
lines = [l.rstrip() for l in lines]
return lines