forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_builder_test.py
302 lines (271 loc) · 9.1 KB
/
model_builder_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for lstm_object_detection.tensorflow.model_builder."""
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from lstm_object_detection import model_builder
from lstm_object_detection.meta_architectures import lstm_ssd_meta_arch
from lstm_object_detection.protos import pipeline_pb2 as internal_pipeline_pb2
from object_detection.protos import pipeline_pb2
class ModelBuilderTest(tf.test.TestCase):
def create_train_model(self, model_config, lstm_config):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
lstm_config: LstmModel config proto that specifies LSTM train/eval
configs.
Returns:
DetectionModel based on the config.
"""
return model_builder.build(model_config, lstm_config, is_training=True)
def create_eval_model(self, model_config, lstm_config):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
lstm_config: LstmModel config proto that specifies LSTM train/eval
configs.
Returns:
DetectionModel based on the config.
"""
return model_builder.build(model_config, lstm_config, is_training=False)
def get_model_configs_from_proto(self):
"""Creates a model text proto for testing.
Returns:
A dictionary of model configs.
"""
model_text_proto = """
[lstm_object_detection.protos.lstm_model] {
train_unroll_length: 4
eval_unroll_length: 4
}
model {
ssd {
feature_extractor {
type: 'lstm_ssd_mobilenet_v1'
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
negative_class_weight: 2.0
box_coder {
faster_rcnn_box_coder {
}
}
matcher {
argmax_matcher {
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
aspect_ratios: 1.0
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
}
normalize_loc_loss_by_codesize: true
loss {
classification_loss {
weighted_softmax {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
}
}
}"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(model_text_proto, pipeline_config)
configs = {}
configs['model'] = pipeline_config.model
configs['lstm_model'] = pipeline_config.Extensions[
internal_pipeline_pb2.lstm_model]
return configs
def get_interleaved_model_configs_from_proto(self):
"""Creates an interleaved model text proto for testing.
Returns:
A dictionary of model configs.
"""
model_text_proto = """
[lstm_object_detection.protos.lstm_model] {
train_unroll_length: 4
eval_unroll_length: 10
lstm_state_depth: 320
depth_multipliers: 1.4
depth_multipliers: 0.35
pre_bottleneck: true
low_res: true
train_interleave_method: 'RANDOM_SKIP_SMALL'
eval_interleave_method: 'SKIP3'
}
model {
ssd {
feature_extractor {
type: 'lstm_ssd_interleaved_mobilenet_v2'
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
negative_class_weight: 2.0
box_coder {
faster_rcnn_box_coder {
}
}
matcher {
argmax_matcher {
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
aspect_ratios: 1.0
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
}
}
}
normalize_loc_loss_by_codesize: true
loss {
classification_loss {
weighted_softmax {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
}
}
}"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(model_text_proto, pipeline_config)
configs = {}
configs['model'] = pipeline_config.model
configs['lstm_model'] = pipeline_config.Extensions[
internal_pipeline_pb2.lstm_model]
return configs
def test_model_creation_from_valid_configs(self):
configs = self.get_model_configs_from_proto()
# Test model properties.
self.assertEqual(configs['model'].ssd.negative_class_weight, 2.0)
self.assertTrue(configs['model'].ssd.normalize_loc_loss_by_codesize)
self.assertEqual(configs['model'].ssd.feature_extractor.type,
'lstm_ssd_mobilenet_v1')
model = self.create_train_model(configs['model'], configs['lstm_model'])
# Test architechture type.
self.assertIsInstance(model, lstm_ssd_meta_arch.LSTMSSDMetaArch)
# Test LSTM unroll length.
self.assertEqual(model.unroll_length, 4)
model = self.create_eval_model(configs['model'], configs['lstm_model'])
# Test architechture type.
self.assertIsInstance(model, lstm_ssd_meta_arch.LSTMSSDMetaArch)
# Test LSTM configs.
self.assertEqual(model.unroll_length, 4)
def test_interleaved_model_creation_from_valid_configs(self):
configs = self.get_interleaved_model_configs_from_proto()
# Test model properties.
self.assertEqual(configs['model'].ssd.negative_class_weight, 2.0)
self.assertTrue(configs['model'].ssd.normalize_loc_loss_by_codesize)
self.assertEqual(configs['model'].ssd.feature_extractor.type,
'lstm_ssd_interleaved_mobilenet_v2')
model = self.create_train_model(configs['model'], configs['lstm_model'])
# Test architechture type.
self.assertIsInstance(model, lstm_ssd_meta_arch.LSTMSSDMetaArch)
# Test LSTM configs.
self.assertEqual(model.unroll_length, 4)
self.assertEqual(model._feature_extractor.lstm_state_depth, 320)
self.assertAllClose(model._feature_extractor.depth_multipliers, (1.4, 0.35))
self.assertTrue(model._feature_extractor.pre_bottleneck)
self.assertTrue(model._feature_extractor.low_res)
self.assertEqual(model._feature_extractor.interleave_method,
'RANDOM_SKIP_SMALL')
model = self.create_eval_model(configs['model'], configs['lstm_model'])
# Test architechture type.
self.assertIsInstance(model, lstm_ssd_meta_arch.LSTMSSDMetaArch)
# Test LSTM configs.
self.assertEqual(model.unroll_length, 10)
self.assertEqual(model._feature_extractor.lstm_state_depth, 320)
self.assertAllClose(model._feature_extractor.depth_multipliers, (1.4, 0.35))
self.assertTrue(model._feature_extractor.pre_bottleneck)
self.assertTrue(model._feature_extractor.low_res)
self.assertEqual(model._feature_extractor.interleave_method, 'SKIP3')
def test_model_creation_from_invalid_configs(self):
configs = self.get_model_configs_from_proto()
# Test model build failure with wrong input configs.
with self.assertRaises(AttributeError):
_ = self.create_train_model(configs['model'], configs['model'])
with self.assertRaises(AttributeError):
_ = self.create_eval_model(configs['model'], configs['model'])
if __name__ == '__main__':
tf.test.main()