-
Notifications
You must be signed in to change notification settings - Fork 80
/
Densenet_testway.py
324 lines (270 loc) · 9.55 KB
/
Densenet_testway.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
'''
Python 3.6
Pytorch >= 0.4
Written by Hongyu Wang in Beihang university
'''
import torch
import math
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy
import torch.utils.data as data
from data_iterator import dataIterator
from Attention_RNN import AttnDecoderRNN
from Densenet_torchvision import densenet121
from PIL import Image
from numpy import *
torch.backends.cudnn.benchmark = False
def cmp_result(label,rec):
dist_mat = numpy.zeros((len(label)+1, len(rec)+1),dtype='int32')
dist_mat[0,:] = range(len(rec) + 1)
dist_mat[:,0] = range(len(label) + 1)
for i in range(1, len(label) + 1):
for j in range(1, len(rec) + 1):
hit_score = dist_mat[i-1, j-1] + (label[i-1] != rec[j-1])
ins_score = dist_mat[i,j-1] + 1
del_score = dist_mat[i-1, j] + 1
dist_mat[i,j] = min(hit_score, ins_score, del_score)
dist = dist_mat[len(label), len(rec)]
return dist, len(label),hit_score,ins_score,del_score
def load_dict(dictFile):
fp=open(dictFile)
stuff=fp.readlines()
fp.close()
lexicon={}
for l in stuff:
w=l.strip().split()
lexicon[w[0]]=int(w[1])
print('total words/phones',len(lexicon))
return lexicon
valid_datasets=['./offline-test.pkl', './test_caption.txt']
dictionaries=['./dictionary.txt']
batch_Imagesize=16
valid_batch_Imagesize=16
batch_size_t=1
maxlen=48
maxImagesize=100000
hidden_size = 256
gpu = [0]
worddicts = load_dict(dictionaries[0])
worddicts_r = [None] * len(worddicts)
for kk, vv in worddicts.items():
worddicts_r[vv] = kk
test,test_label = dataIterator(valid_datasets[0],valid_datasets[1],worddicts,batch_size=1,batch_Imagesize=batch_Imagesize,maxlen=maxlen,maxImagesize=maxImagesize)
class custom_dset(data.Dataset):
def __init__(self,train,train_label):
self.train = train
self.train_label = train_label
def __getitem__(self, index):
train_setting = torch.from_numpy(numpy.array(self.train[index]))
label_setting = torch.from_numpy(numpy.array(self.train_label[index])).type(torch.LongTensor)
size = train_setting.size()
train_setting = train_setting.view(1,size[2],size[3])
label_setting = label_setting.view(-1)
return train_setting,label_setting
def __len__(self):
return len(self.train)
off_image_test = custom_dset(test,test_label)
#print(off_image_train[10])
def imresize(im,sz):
pil_im = Image.fromarray(im)
return array(pil_im.resize(sz))
def collate_fn(batch):
batch.sort(key=lambda x: len(x[1]), reverse=True)
img, label = zip(*batch)
aa1 = 0
bb1 = 0
k = 0
k1 = 0
max_len = len(label[0])+1
for j in range(len(img)):
size = img[j].size()
if size[1] > aa1:
aa1 = size[1]
if size[2] > bb1:
bb1 = size[2]
for ii in img:
ii = ii.float()
img_size_h = ii.size()[1]
img_size_w = ii.size()[2]
img_mask_sub_s = torch.ones(1,img_size_h,img_size_w).type(torch.FloatTensor)
img_mask_sub_s = img_mask_sub_s*255.0
img_mask_sub = torch.cat((ii,img_mask_sub_s),dim=0)
padding_h = aa1-img_size_h
padding_w = bb1-img_size_w
m = torch.nn.ZeroPad2d((0,padding_w,0,padding_h))
img_mask_sub_padding = m(img_mask_sub)
img_mask_sub_padding = img_mask_sub_padding.unsqueeze(0)
if k==0:
img_padding_mask = img_mask_sub_padding
else:
img_padding_mask = torch.cat((img_padding_mask,img_mask_sub_padding),dim=0)
k = k+1
for ii1 in label:
ii1 = ii1.long()
ii1 = ii1.unsqueeze(0)
ii1_len = ii1.size()[1]
m = torch.nn.ZeroPad2d((0,max_len-ii1_len,0,0))
ii1_padding = m(ii1)
if k1 == 0:
label_padding = ii1_padding
else:
label_padding = torch.cat((label_padding,ii1_padding),dim=0)
k1 = k1+1
img_padding_mask = img_padding_mask/255.0
return img_padding_mask, label_padding
test_loader = torch.utils.data.DataLoader(
dataset = off_image_test,
batch_size = batch_size_t,
shuffle = True,
collate_fn = collate_fn
)
encoder = densenet121()
attn_decoder1 = AttnDecoderRNN(hidden_size,112,dropout_p=0.5)
encoder = torch.nn.DataParallel(encoder, device_ids=gpu)
attn_decoder1 = torch.nn.DataParallel(attn_decoder1, device_ids=gpu)
encoder = encoder.cuda()
attn_decoder1 = attn_decoder1.cuda()
encoder.load_state_dict(torch.load('model/encoder_lr0.00001_BN_te1_d05_SGD_bs8_mask_conv_bn_b.pkl'))
attn_decoder1.load_state_dict(torch.load('model/attn_decoder_lr0.00001_BN_te1_d05_SGD_bs8_mask_conv_bn_b.pkl'))
total_dist = 0
total_label = 0
total_line = 0
total_line_rec = 0
hit_all =0
ins_all =0
dls_all =0
wer_1 = 0
wer_2 = 0
wer_3 = 0
wer_4 = 0
wer_5 = 0
wer_6 = 0
wer_up=0
encoder.eval()
attn_decoder1.eval()
for step_t, (x_t, y_t) in enumerate(test_loader):
x_real_high = x_t.size()[2]
x_real_width = x_t.size()[3]
if x_t.size()[0]<batch_size_t:
break
h_mask_t = []
w_mask_t = []
for i in x_t:
#h*w
size_mask_t = i[1].size()
s_w_t = str(i[1][0])
s_h_t = str(i[1][:,1])
w_t = s_w_t.count('1')
h_t = s_h_t.count('1')
h_comp_t = int(h_t/16)+1
w_comp_t = int(w_t/16)+1
h_mask_t.append(h_comp_t)
w_mask_t.append(w_comp_t)
x_t = x_t.cuda()
y_t = y_t.cuda()
output_highfeature_t = encoder(x_t)
x_mean_t = torch.mean(output_highfeature_t)
x_mean_t = float(x_mean_t)
output_area_t1 = output_highfeature_t.size()
output_area_t = output_area_t1[3]
dense_input = output_area_t1[2]
decoder_input_t = torch.LongTensor([111]*batch_size_t)
decoder_input_t = decoder_input_t.cuda()
decoder_hidden_t = torch.randn(batch_size_t, 1, hidden_size).cuda()
decoder_hidden_t = decoder_hidden_t * x_mean_t
decoder_hidden_t = torch.tanh(decoder_hidden_t)
prediction = torch.zeros(batch_size_t,maxlen)
#label = torch.zeros(batch_size_t,maxlen)
prediction_sub = []
label_sub = []
label_real = []
prediction_real = []
decoder_attention_t = torch.zeros(batch_size_t,1,dense_input,output_area_t).cuda()
attention_sum_t = torch.zeros(batch_size_t,1,dense_input,output_area_t).cuda()
m = torch.nn.ZeroPad2d((0,maxlen-y_t.size()[1],0,0))
y_t = m(y_t)
for i in range(maxlen):
decoder_output, decoder_hidden_t, decoder_attention_t, attention_sum_t = attn_decoder1(decoder_input_t,
decoder_hidden_t,
output_highfeature_t,
output_area_t,
attention_sum_t,
decoder_attention_t,dense_input,batch_size_t,h_mask_t,w_mask_t,gpu)
topv,topi = torch.max(decoder_output,2)
if torch.sum(topi)==0:
break
decoder_input_t = topi
decoder_input_t = decoder_input_t.view(batch_size_t)
#print(topi.size()) 16,1
# prediction
prediction[:,i] = decoder_input_t
for i in range(batch_size_t):
for j in range(maxlen):
if int(prediction[i][j]) ==0:
break
else:
prediction_sub.append(int(prediction[i][j]))
prediction_real.append(worddicts_r[int(prediction[i][j])])
if len(prediction_sub)<maxlen:
prediction_sub.append(0)
for k in range(y_t.size()[1]):
if int(y_t[i][k]) ==0:
break
else:
label_sub.append(int(y_t[i][k]))
label_real.append(worddicts_r[int(y_t[i][k])])
label_sub.append(0)
dist, llen, hit, ins, dls = cmp_result(label_sub, prediction_sub)
wer_step = float(dist) / llen
total_dist += dist
total_label += llen
total_line += 1
if dist == 0:
total_line_rec = total_line_rec+ 1
print('step is %d' % (step_t))
print('prediction is ')
#print(''.join(prediction_real))
print(prediction_real)
print('the truth is')
#print(''.join(label_real))
print(label_real)
print('the wer is %.5f' % (wer_step))
label_sub = []
prediction_sub = []
label_real = []
prediction_real = []
# dist, llen, hit, ins, dls = cmp_result(label, prediction)
# wer_step = float(dist) / llen
# print('the wer is %.5f' % (wer_step))
# if wer_step <= 0.1:
# wer_1 += 1
# elif 0.1 < wer_step <= 0.2:
# wer_2 += 1
# elif 0.2 < wer_step <= 0.3:
# wer_3 += 1
# elif 0.3 < wer_step <= 0.4:
# wer_4 += 1
# elif 0.4 < wer_step <= 0.5:
# wer_5 += 1
# elif 0.5 < wer_step <= 0.6:
# wer_6 += 1
# else:
# wer_up += 1
# hit_all += hit
# ins_all += ins
# dls_all += dls
# total_dist += dist
# total_label += llen
# total_line += 1
# if dist == 0:
# total_line_rec += 1
wer = float(total_dist) / total_label
sacc = float(total_line_rec) / total_line
print('wer is %.5f' % (wer))
print('sacc is %.5f ' % (sacc))
# print('hit is %d' % (hit_all))
# print('ins is %d' % (ins_all))
# print('dls is %d' % (dls_all))
# print('wer loss is %.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f' % (wer_1, wer_2, wer_3, wer_4, wer_5, wer_6, wer_up))