This repository has been archived by the owner on May 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheigenFitter.cc
194 lines (173 loc) · 5.54 KB
/
eigenFitter.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <iostream>
#include <fstream>
#include <vector>
#include <Eigen/Sparse>
#include <Eigen/IterativeLinearSolvers>
#include "TFile.h"
#include "TTree.h"
#include "TLeaf.h"
#include "TGraph.h"
using namespace Eigen;
using namespace std;
void compute_piecewise_function(double A, vector<double>& b){
b = {0,0,0,0,0};
if(A<1000){
b[0] = 1. - A/1000.;
b[1] = A/1000.;
}
else if(A<2000){
b[1] = 1. - (A-1000.)/1000.;
b[2] = (A-1000)/1000.;
}
else if(A<3000){
b[2] = 1 - (A-2000.)/1000.;
b[3] = (A-2000)/1000.;
}
else if(A<4000){
b[3] = 1 - (A-3000.)/1000.;
b[4] = (A-3000.)/1000.;
}
}
class WfPoint {
public:
double t;
double A;
double G;
};
class Calpha {
public:
vector<double> _t;
vector<int> _N;
vector<double> _c; // (A+f)/G
void Compute(vector<WfPoint>, vector<double>); // A, G and piecewise function {y0,y1,...,yn}
double GetValue(double); // t <=> c
};
/* c = avg of {(A+f)/G} in the same time-tick*/
void Calpha::Compute(vector<WfPoint> recv, vector<double> yv){
_t.clear();
_N.clear();
_c.clear();
vector<double>::iterator it;
for(int i=0; i<recv.size(); i++){
WfPoint rec = recv[i];
double time = rec.t;
/* find a float time in vector */
it = std::find_if(_t.begin(), _t.end(), [time](double b) {return abs(time-b)<1E-5;} );
if(it == _t.end()){
_t.push_back(time);
_N.push_back(1);
vector<double> b(5);
compute_piecewise_function(rec.A, b); // FIXME: reuse the function for same A
double D = b[0] * yv[0] + b[1] * yv[1] + b[2] * yv[2] + b[3] * yv[3] + b[4] * yv[4];
_c.push_back( (rec.A + D)/rec.G );
}
else{
int index = it - _t.begin();
_N[index] += 1;
vector<double> b(5);
compute_piecewise_function(rec.A, b); // FIXME: reuse the function for same A
double D = b[0] * yv[0] + b[1] * yv[1] + b[2] * yv[2] + b[3] * yv[3] + b[4] * yv[4];
_c[index] += (rec.A + D)/rec.G;
}
}
for(int i=0; i<_t.size(); i++){
_c[i] /= _N[i];
}
}
double Calpha::GetValue(double time){
vector<double>::iterator it;
/* find a float time in vector */
it = std::find_if(_t.begin(), _t.end(), [time](double b) {return abs(time-b)<1E-5;} );
if(it == _t.end()){
cout << "Error: out of range in time series!" << endl;
return 0;
}
int index = it - _t.begin();
// cout << "c= " << _c[index] << " ; t= " << time << endl;
return _c[index];
}
int main()
{
vector<WfPoint> recv;
WfPoint therec;
/* save all data points */
double thistime, thisA, thisG;
TFile* ifile = TFile::Open("protodune-nl-MC.root");
TTree* T = (TTree*)ifile->Get("T");
for(int i=0; i<T->GetEntries(); i++){
T->GetEntry(i);
double Ameas = T->GetLeaf("Ameas")->GetValue();
double time = T->GetLeaf("time")->GetValue();
double Vdac = T->GetLeaf("Vdac")->GetValue();
double Gamp = T->GetLeaf("Gamp")->GetValue();
cout << Ameas << " " << time << " " << Vdac << " " << Gamp << endl;
if(Ameas>500 && Ameas<4000 && (Vdac*183.<100.) && (Vdac*183.*Gamp*1E-3<1.4)){
therec.t = time;
therec.A = Ameas;
therec.G = Vdac*Gamp;
recv.push_back(therec);
}
}
ifile->Close();
cout << "size of recv: " << recv.size() << endl;
vector<double> yv = {0,0,0,0,0};
// vector<double> yv = {-10,-10,-10,-10,-10};
// vector<double> yv = {-22, -16, -9.5, -3.2, 3.1};
// cout << " true pars: -22, -16, -9.5, -3.2, 3.1" << endl;
cout << " initial guess: " << yv[0] << " " << yv[1] << " " << yv[2] << " " << yv[3] << " " << yv[4] << endl;
/* ... iterate for n times ... */
int nloop = 10;
Calpha theC;
for(int iloop=0; iloop<nloop; iloop++){
/* re-compute the coef c */
theC.Compute(recv, yv);
cout << "... nloop = " << iloop << endl;
int ndim = recv.size();
VectorXd M(ndim);
SparseMatrix<double> R(ndim,yv.size());
for(int i=0; i<ndim; i++){
therec = recv[i];
double c = theC.GetValue(therec.t);
M(i) = therec.A - c * therec.G;
vector<double> b(5);
compute_piecewise_function(therec.A, b);
for(int j=0; j<yv.size(); j++){
R.insert(i,j) = -b[j];
}
}
SparseMatrix<double> RTR(5,5);
VectorXd x(5), RTM(5);
RTR = R.transpose() * R;
RTM = R.transpose() * M;
/* ... solve the linear eqn: RTR*x = RTM ... */
BiCGSTAB<SparseMatrix<double> > solver;
solver.compute(RTR);
x = solver.solve(RTM);
// std::cout << "#iterations: " << solver.iterations() << std::endl;
// std::cout << "estimated error: " << solver.error() << std::endl;
cout << " pars = " << x.transpose() << endl;
VectorXd chi(ndim);
chi = M - R * x;
cout << " Chi2 = " << chi.transpose() * chi << endl << endl;
/* save values for next iteration */
yv = {x(0), x(1), x(2), x(3), x(4)};
}
theC.Compute(recv,yv);
double x[5] = {0, 1000, 2000, 3000, 4000};
TGraph* gNL = new TGraph(5, x, &(yv[0]));
gNL->SetName("NLcorrection");
TGraph* gResp = new TGraph();
gResp->SetName("Response");
// sort the time vector of theC
vector<double> v = theC._t;
sort(v.begin(), v.end(), [](double a, double b) {return a<b;} );
for(int i=0; i<v.size(); i++){
cout << v[i] << " " << theC.GetValue(v[i]) << endl;
gResp->SetPoint(gResp->GetN(), v[i], theC.GetValue(v[i]) );
}
TFile* ofile = new TFile("protodune-nl-MC-fitres.root","recreate");
gNL->Write();
gResp->Write();
ofile->Close();
return 0;
}