forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomo_nn.py
210 lines (186 loc) · 8.7 KB
/
homo_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from pipeline.interface import Input
from pipeline.interface import Output
from pipeline.utils.tools import extract_explicit_parameter
from pipeline.utils.logger import LOGGER
from pipeline.component.component_base import FateComponent
from pipeline.component.nn.interface import TrainerParam, DatasetParam
DEFAULT_PARAM_DICT = {}
try:
import torch as t
OptimizerType = t.optim.Optimizer
except ImportError:
OptimizerType = 't.optim.Optimizer'
try:
import torch as t
from pipeline.component.nn.backend.torch.base import Sequential
from pipeline.component.nn.backend.torch import base
from pipeline.component.nn.backend.torch.cust import CustModel
# default parameter dict
DEFAULT_PARAM_DICT = {
'trainer': TrainerParam(trainer_name='fedavg_trainer'),
'dataset': DatasetParam(dataset_name='table'),
'torch_seed': 100,
'loss': None,
'optimizer': None,
'nn_define': None,
'ds_config': None,
'server_init': False
}
except Exception as e:
print(e)
print('Import NN components in HomoNN module failed,\
this may casue by the situation that torch are not installed,\
please install torch to use this module')
Sequential = None
class HomoNN(FateComponent):
"""
Parameters
----------
name, name of this component
trainer, trainer param
dataset, dataset param
torch_seed, global random seed
loss, loss function from fate_torch
optimizer, optimizer from fate_torch
ds_config, config for deepspeed
model, a fate torch sequential defining the model structure
server_init, whether to initialize the model, loss and optimizer on server, if configs are provided, they will be used. In
current version this option is specially designed for offsite-tuning
"""
@extract_explicit_parameter
def __init__(self,
name=None,
trainer: TrainerParam = TrainerParam(trainer_name='fedavg_trainer', epochs=10, batch_size=512, # training parameter
early_stop=None, tol=0.0001, # early stop parameters
secure_aggregate=True, weighted_aggregation=True,
aggregate_every_n_epoch=None, # federation
cuda=False, pin_memory=True, shuffle=True, data_loader_worker=0, # GPU dataloader
validation_freqs=None),
dataset: DatasetParam = DatasetParam(dataset_name='table'),
torch_seed: int = 100,
loss=None,
optimizer: OptimizerType = None,
ds_config: dict = None,
model: Sequential = None,
server_init: bool = False,
**kwargs):
explicit_parameters = copy.deepcopy(DEFAULT_PARAM_DICT)
if 'name' not in kwargs["explict_parameters"]:
raise RuntimeError('moduel name is not set')
explicit_parameters["name"] = kwargs["explict_parameters"]['name']
FateComponent.__init__(self, **explicit_parameters)
kwargs["explict_parameters"].pop('name')
self.input = Input(self.name, data_type="multi")
self.output = Output(self.name, data_type='single')
self._module_name = "HomoNN"
self._updated = {
'trainer': False,
'dataset': False,
'torch_seed': False,
'loss': False,
'optimizer': False,
'model': False,
'ds_config': False,
'server_init': False}
self._set_param(kwargs["explict_parameters"])
self._check_parameters()
def _set_updated(self, attr, status=True):
if attr in self._updated:
self._updated[attr] = status
else:
raise ValueError('attr {} not in update status {}'.format(attr, self._updated))
def _set_param(self, params):
if "name" in params:
del params["name"]
for param_key, param_value in params.items():
setattr(self, param_key, param_value)
def _check_parameters(self):
if hasattr(self, 'trainer') and self.trainer is not None and not self._updated['trainer']:
assert isinstance(
self.trainer, TrainerParam), 'trainer must be a TrainerPram class'
self.trainer.check()
self.trainer: TrainerParam = self.trainer.to_dict()
self._set_updated('trainer', True)
if hasattr(self, 'dataset') and self.dataset is not None and not self._updated['dataset']:
assert isinstance(
self.dataset, DatasetParam), 'dataset must be a DatasetParam class'
self.dataset.check()
self.dataset: DatasetParam = self.dataset.to_dict()
self._set_updated('dataset', True)
if hasattr(self, 'model') and self.model is not None and not self._updated['model']:
if isinstance(self.model, Sequential):
self.nn_define = self.model.get_network_config()
elif isinstance(self.model, CustModel):
self.model = Sequential(self.model)
self.nn_define = self.model.get_network_config()
else:
raise RuntimeError('Model must be a fate-torch Sequential, but got {} '
'\n do remember to call fate_torch_hook():'
'\n import torch as t'
'\n fate_torch_hook(t)'.format(
type(self.model)))
self._set_updated('model', True)
if hasattr(self, 'optimizer') and self.optimizer is not None and not self._updated['optimizer']:
if not isinstance(self.optimizer, base.FateTorchOptimizer):
raise ValueError('please pass FateTorchOptimizer instances to Homo-nn components, got {}.'
'do remember to use fate_torch_hook():\n'
' import torch as t\n'
' fate_torch_hook(t)'.format(type(self.optimizer)))
optimizer_config = self.optimizer.to_dict()
self.optimizer = optimizer_config
self._set_updated('optimizer', True)
if hasattr(self, 'loss') and self.loss is not None and not self._updated['loss']:
if isinstance(self.loss, base.FateTorchLoss):
loss_config = self.loss.to_dict()
elif issubclass(self.loss, base.FateTorchLoss):
loss_config = self.loss().to_dict()
else:
raise ValueError('unable to parse loss function {}, loss must be an instance'
'of FateTorchLoss subclass or a subclass of FateTorchLoss, '
'do remember to use fate_torch_hook()'.format(self.loss))
self.loss = loss_config
self._set_updated('loss', True)
def component_param(self, **kwargs):
# reset paramerters
used_attr = set()
setattr(self, 'model', None)
if 'model' in kwargs:
self.model = kwargs['model']
kwargs.pop('model')
self._set_updated('model', False)
for attr in self._component_parameter_keywords:
if attr in kwargs:
setattr(self, attr, kwargs[attr])
self._set_updated(attr, False)
used_attr.add(attr)
self._check_parameters() # check and convert homo-nn paramters
not_use_attr = set(kwargs.keys()).difference(used_attr)
for attr in not_use_attr:
LOGGER.warning(f"key {attr}, value {kwargs[attr]} not use")
self._role_parameter_keywords |= used_attr
for attr in self.__dict__:
if attr not in self._component_parameter_keywords:
continue
else:
self._component_param[attr] = getattr(self, attr)
def __getstate__(self):
state = dict(self.__dict__)
if "model" in state:
del state["model"]
return state