This repository has been archived by the owner on May 18, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
97 lines (72 loc) · 2.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.optim as optim
import numpy as np
import tqdm
import random
from mlxtend.plotting import plot_decision_regions
import matplotlib.pyplot as plt
from celluloid import Camera
from model import Model
from dataset import get_dataloader
from loss import SPLLoss
fig = plt.figure()
camera = Camera(fig)
def setup():
seed = 1445
torch.random.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def train():
setup()
model = Model(2, 2)
dataloader = get_dataloader()
criterion = SPLLoss(n_samples=len(dataloader.dataset))
optimizer = optim.Adam(model.parameters())
for epoch in range(10):
for index, data, target in tqdm.tqdm(dataloader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target, index)
loss.backward()
optimizer.step()
criterion.increase_threshold()
plot(dataloader.dataset, model, criterion)
animation = camera.animate()
animation.save("plot.gif")
def find_anomaly():
setup()
model = Model(2, 2)
dataloader = get_dataloader()
criterion = SPLLoss(n_samples=len(dataloader.dataset))
optimizer = optim.Adam(model.parameters())
# for epoch in range(10):
epoch = 0
while (criterion.v == 0).sum() > 5:
for index, data, target in tqdm.tqdm(dataloader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target, index)
loss.backward()
optimizer.step()
criterion.increase_threshold()
plot(dataloader.dataset, model, criterion)
epoch += 1
anomalies = np.where(criterion.v == 0)[0]
print(anomalies)
plot_anomalies(dataloader.dataset, model, criterion, anomalies)
animation = camera.animate()
animation.save("anomalies.gif")
def plot(dataset, model, criterion):
x = dataset.X[criterion.v == 1]
y = dataset.y[criterion.v == 1]
plt.scatter(dataset.X[:, 0], dataset.X[:, 1], alpha=0)
plot_decision_regions(x.detach().numpy(), y.detach().numpy(), clf=model, legend=None)
camera.snap()
def plot_anomalies(dataset, model, criterion, anomalies):
x = dataset.X[criterion.v == 1]
y = dataset.y[criterion.v == 1]
plot_decision_regions(x.detach().numpy(), y.detach().numpy(), clf=model, legend=None)
plt.scatter(dataset.X[anomalies, 0], dataset.X[anomalies, 1], c="red", marker="o")
camera.snap()
if __name__ == "__main__":
train()