forked from Luoxd1996/nnunet_mini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInference2D.py
179 lines (142 loc) · 7.33 KB
/
Inference2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from glob import glob
import SimpleITK as sitk
import numpy as np
import torch
import torch.nn as nn
from generic_UNet import InitWeights_He
import pickle
import torch.nn.functional as F
from generic_UNet import Generic_UNet
prefix = "version5"
planfile = "/data/nnUNetFrame/DATASET/nnUNet_trained_models/nnUNet/2d/Task002_ABDSeg/nnUNetTrainer__nnUNetPlansv2.1/plans.pkl"
modelfile = "/data/nnUNetFrame/DATASET/nnUNet_trained_models/nnUNet/2d/Task002_ABDSeg/nnUNetTrainer__nnUNetPlansv2.1/all/model_final_checkpoint.model"
rawfs = glob("/home/SENSETIME/luoxiangde.vendor/Projects/ABDSeg/data/ABDSeg/data/imagesTs/*.nii.gz")
info = pickle.load(open(planfile, "rb"))
plan_data = {}
plan_data["plans"] = info
print(plan_data)
def recycle_plot(data, prefix):
for k, v in data.items():
if isinstance(v, dict):
if isinstance(k, int):
k = "%d" % k
recycle_plot(v, prefix + "->" + k)
else:
print(prefix, k, v)
print("Inference")
resolution_index = 1
num_classes = plan_data['plans']['num_classes']
base_num_features = plan_data['plans']['base_num_features']
patch_size = plan_data['plans']['plans_per_stage'][resolution_index]['patch_size']
pool_op_kernel_sizes = plan_data['plans']['plans_per_stage'][resolution_index]['pool_op_kernel_sizes']
conv_kernel_sizes = plan_data['plans']['plans_per_stage'][resolution_index]['conv_kernel_sizes']
current_spacing = plan_data['plans']['plans_per_stage'][resolution_index]['current_spacing']
mean = plan_data['plans']['dataset_properties']['intensityproperties'][0]['mean']
std = plan_data['plans']['dataset_properties']['intensityproperties'][0]['sd']
clip_min = plan_data['plans']['dataset_properties']['intensityproperties'][0]['percentile_00_5']
clip_max = plan_data['plans']['dataset_properties']['intensityproperties'][0]['percentile_99_5']
norm_op_kwargs = {'eps': 1e-5, 'affine': True}
dropout_op_kwargs = {'p': 0, 'inplace': True}
net_nonlin = nn.LeakyReLU
net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
net = Generic_UNet(1, base_num_features, num_classes + 1, len(pool_op_kernel_sizes), 2, 2,
nn.Conv2d, nn.InstanceNorm2d, norm_op_kwargs, nn.Dropout2d,
dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, False, False, lambda x: x,
InitWeights_He(1e-2), pool_op_kernel_sizes, conv_kernel_sizes, False, True, True)
net.cuda()
checkpoint = torch.load(modelfile)
weights = checkpoint['state_dict']
net.load_state_dict(weights, strict=False)
net.eval()
net.half()
def _get_arr(path):
sitkimg = sitk.ReadImage(path)
arr = sitk.GetArrayFromImage(sitkimg)
return arr, sitkimg
def _write_arr(arr, path, info=None):
sitkimg = sitk.GetImageFromArray(arr)
if info is not None:
sitkimg.CopyInformation(info)
sitk.WriteImage(sitkimg, path)
def get_do_separate_z(spacing, anisotropy_threshold=2):
# do_separate_z = (np.max(spacing) / np.min(spacing)) > anisotropy_threshold
do_separate_z = spacing[-1] > anisotropy_threshold
return do_separate_z
def predict2D(arr, batch_size=4):
prob_map = torch.zeros((1, num_classes + 1,) + arr.shape).half().cuda()
arr_clip = np.clip(arr, clip_min, clip_max)
raw_norm = (arr_clip - mean) / std
ind_x = np.array([i for i in range(raw_norm.shape[0])])
for ind in ind_x[::batch_size]:
print(ind)
if ind + batch_size < raw_norm.shape[0]:
tensor_arr = torch.from_numpy(raw_norm[ind:ind + batch_size, ...]).cuda().half().unsqueeze(1)
with torch.no_grad():
seg_pro = net(tensor_arr)
_pred = seg_pro
prob_map[:, :, ind:ind + batch_size, ...] += _pred.permute(1, 0, 2, 3)
else:
tensor_arr = torch.from_numpy(raw_norm[ind:, ...]).cuda().half().unsqueeze(1)
with torch.no_grad():
seg_pro = net(tensor_arr)
_pred = seg_pro
prob_map[:, :, ind:, ...] += _pred.permute(1, 0, 2, 3)
torch.cuda.empty_cache()
return prob_map.detach().cpu()
def itk_change_spacing(src_itk, output_spacing, interpolate_method='Linear'):
assert interpolate_method in ['Linear', 'NearestNeighbor']
src_size = src_itk.GetSize()
src_spacing = src_itk.GetSpacing()
re_sample_scale = tuple(np.array(src_spacing) / np.array(output_spacing).astype(np.float))
re_sample_size = tuple(np.array(src_size).astype(np.float) * np.array(re_sample_scale))
re_sample_size = [int(round(x)) for x in re_sample_size]
output_spacing = tuple((np.array(src_size) / np.array(re_sample_size)) * np.array(src_spacing))
re_sampler = sitk.ResampleImageFilter()
re_sampler.SetOutputPixelType(src_itk.GetPixelID())
re_sampler.SetReferenceImage(src_itk)
re_sampler.SetSize(re_sample_size)
re_sampler.SetOutputSpacing(output_spacing)
re_sampler.SetInterpolator(eval('sitk.sitk' + interpolate_method))
return re_sampler.Execute(src_itk)
def resample_image_to_ref(image, ref, interp=sitk.sitkNearestNeighbor, pad_value=0):
resample = sitk.ResampleImageFilter()
resample.SetReferenceImage(ref)
resample.SetDefaultPixelValue(pad_value)
resample.SetInterpolator(interp)
return resample.Execute(image)
def Inference2D(rawf):
arr_raw, sitk_raw = _get_arr(rawf)
origin_spacing = sitk_raw.GetSpacing()
img_arr = arr_raw
prob_map = predict2D(img_arr)
if get_do_separate_z(origin_spacing) or get_do_separate_z(current_spacing[::-1]):
print('postpreprocessing: do seperate z......')
prob_map_interp_xy = torch.zeros(
list(prob_map.size()[:2]) + [prob_map.size()[2], ] + list(sitk_raw.GetSize()[::-1][1:]), dtype=torch.half)
for i in range(prob_map.size(2)):
prob_map_interp_xy[:, :, i] = F.interpolate(prob_map[:, :, i].cuda().float(),
size=sitk_raw.GetSize()[::-1][1:],
mode="bilinear").detach().half().cpu()
del prob_map
prob_map_interp = np.zeros(list(prob_map_interp_xy.size()[:2]) + list(sitk_raw.GetSize()[::-1]),
dtype=np.float16)
for i in range(prob_map_interp.shape[1]):
prob_map_interp[:, i] = F.interpolate(prob_map_interp_xy[:, i:i + 1].cuda().float(),
size=sitk_raw.GetSize()[::-1],
mode="nearest").detach().half().cpu().numpy()
del prob_map_interp_xy
else:
prob_map_interp = np.zeros(list(prob_map.size()[:2]) + list(sitk_raw.GetSize()[::-1]), dtype=np.float16)
for i in range(prob_map.size(1)):
prob_map_interp[:, i] = F.interpolate(prob_map[:, i:i + 1].cuda().float(),
size=sitk_raw.GetSize()[::-1],
mode="trilinear").detach().half().cpu().numpy()
del prob_map
vessel_clf = np.argmax(prob_map_interp.squeeze(0), axis=0)
del prob_map_interp
pred_sitk = sitk.GetImageFromArray(vessel_clf.astype(np.uint8))
pred_sitk.CopyInformation(sitk_raw)
pred_sitk = resample_image_to_ref(pred_sitk, sitk_raw)
sitk.WriteImage(pred_sitk, rawf.replace(".nii.gz", "_nnUNet2D_pred.nii.gz"))
rawf = "/home/SENSETIME/luoxiangde.vendor/Projects/ABDSeg/data/ABDSeg/data/imagesTs/ABD_0014.nii.gz"
Inference2D(rawf)