-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexp_vae_act_babel.py
243 lines (215 loc) · 11.9 KB
/
exp_vae_act_babel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import sys
import math
import pickle
import argparse
import time
import numpy as np
import torch
from torch import optim
from torch.utils.tensorboard import SummaryWriter
sys.path.append(os.getcwd())
from utils import *
from motion_pred.utils.config import Config
from motion_pred.utils.dataset_babel_action_transition import DatasetBabel
from models.motion_pred import *
from utils.utils import get_dct_matrix
import pdb
"""dct smoothness + last frame smoothness, with action transition"""
def loss_function(X, Y_r, Y, mu, logvar, pmu, plogvar, fn_mask, dct_m, idct_m):
lambdas = cfg.vae_specs['lambdas']
MSE = (Y_r - Y).pow(2).sum(dim=-1).transpose(0, 1)
MSE[fn_mask == 0] = 0
MSE = (MSE.sum(dim=1)/(fn_mask.sum(dim=1)+1e-10)).mean()
# smoothness
x = torch.cat([X[-args.N:],Y_r[:args.N]],dim=0).transpose(0,1)
x_est = torch.matmul(idct_m[None,:,:args.dct_n],torch.matmul(dct_m[None,:args.dct_n],x))
MSE_v1 = (x_est - x).norm(dim=-1).mean()
MSE_v2 = (X[-1] - Y_r[0]).norm(dim=-1).mean()
KLD = 0.5 * torch.sum(plogvar - logvar + (logvar.exp() + (mu - pmu).pow(2)) / (plogvar.exp()+1e-10) - 1) / Y.shape[1]
# regularization
if len(lambdas) == 3:
loss_r = lambdas[0] * MSE + lambdas[1] * MSE_v1 + lambdas[1] * MSE_v2 + lambdas[2] * KLD
else:
loss_r = lambdas[0] * MSE + lambdas[1] * MSE_v1 + lambdas[2] * MSE_v2 + lambdas[3] * KLD
return loss_r, np.array([loss_r.item(), MSE.item(), MSE_v1.item(), MSE_v2.item() , KLD.item()])
def train(epoch):
t_s = time.time()
train_losses = 0
total_num_sample = 0
train_grad = 0
loss_names = ['TOTAL', 'MSE', 'DCT_smooth', 'Lastframe_smooth', 'KLD']
generator = dataset.sampling_generator(num_samples=cfg.num_vae_data_sample, batch_size=cfg.batch_size,
is_other_act=args.is_other_act, t_pre_extra=args.t_pre_extra,
act_trans_k= cfg.vae_specs['act_trans_k'] if 'act_trans_k'
in cfg.vae_specs else 0.08,
max_trans_fn= cfg.vae_specs['max_trans_fn'] if 'max_trans_fn'
in cfg.vae_specs else 25,
is_transi=args.is_transi, n_others=args.n_other,
others_all_act=cfg.vae_specs.get('others_all_act',False))
dct_m, idct_m = get_dct_matrix(args.N*2, is_torch=True,device=device,dtype=dtype)
for traj_np, label, fn, fn_mask in generator:
# traj_np = traj_np[..., 1:, :].reshape(traj_np.shape[0], traj_np.shape[1], -1)
traj = tensor(traj_np, device=device, dtype=dtype).permute(1, 0, 2).contiguous()
label = tensor(label, device=device, dtype=dtype)
fn = tensor(fn[:, t_his:], device=device, dtype=dtype)
fn_mask = tensor(fn_mask[:, t_his:], device=device, dtype=dtype)
X = traj[:t_his]
Y = traj[t_his:]
if cfg.dataset == 'babel':
index_used = list(range(30)) + list(range(36, 66))
Y = Y[:, :, index_used]
X = X[:, :, index_used]
Y_r, mu, logvar, pmu, plogvar = model(X, Y, label, fn)
loss, losses = loss_function(X, Y_r, Y, mu, logvar, pmu, plogvar, fn_mask, dct_m, idct_m)
optimizer.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(list(model.parameters()), max_norm=200)
if torch.isnan(loss) or torch.isinf(loss) or loss > 100000 or \
torch.isnan(grad_norm) or torch.isinf(grad_norm) or grad_norm > 100000:
continue
# pdb.set_trace()
train_grad += grad_norm
optimizer.step()
train_losses += losses
total_num_sample += 1
scheduler.step()
dt = time.time() - t_s
if not(type(train_losses) == np.ndarray):
train_losses = np.zeros_like(losses)
train_losses /= (total_num_sample+1e-10)
lr = optimizer.param_groups[0]['lr']
losses_str = ' '.join(['{}: {:.4f}'.format(x, y) for x, y in zip(loss_names, train_losses)])
logger.info('====> Epoch: {} Time: {:.2f} {} lr: {:.5f} total samp: {:d}'.format(epoch, dt,
losses_str, lr,
total_num_sample))
tb_logger.add_scalar('train_grad', train_grad / (total_num_sample+1e-10), epoch)
for name, loss in zip(loss_names, train_losses):
tb_logger.add_scalars('vae_' + name, {'train': loss}, epoch)
def test(epoch):
t_s = time.time()
train_losses = 0
total_num_sample = 0
loss_names = ['TOTAL', 'MSE', 'DCT_smooth', 'Lastframe_smooth', 'KLD']
generator = dataset_test.sampling_generator(num_samples=cfg.num_vae_data_sample, batch_size=cfg.batch_size,
is_other_act=args.is_other_act, t_pre_extra=args.t_pre_extra,
act_trans_k= cfg.vae_specs['act_trans_k'] if 'act_trans_k'
in cfg.vae_specs else 0.08,
max_trans_fn= cfg.vae_specs['max_trans_fn'] if 'max_trans_fn'
in cfg.vae_specs else 25,
n_others=args.n_other,
others_all_act=cfg.vae_specs['others_all_act'])
dct_m, idct_m = get_dct_matrix(args.N*2, is_torch=True,device=device)
with torch.no_grad():
for traj_np, label, fn, fn_mask in generator:
# traj_np = traj_np[..., 1:, :].reshape(traj_np.shape[0], traj_np.shape[1], -1)
traj = tensor(traj_np, device=device, dtype=dtype).permute(1, 0, 2).contiguous()
label = tensor(label, device=device, dtype=dtype)
fn = tensor(fn[:, t_his:], device=device, dtype=dtype)
fn_mask = tensor(fn_mask[:, t_his:], device=device, dtype=dtype)
X = traj[:t_his]
Y = traj[t_his:]
if cfg.dataset == 'babel':
index_used = list(range(30)) + list(range(36, 66))
Y = Y[:, :, index_used]
X = X[:, :, index_used]
Y_r, mu, logvar, pmu, plogvar = model(X, Y, label, fn)
loss, losses = loss_function(X, Y_r, Y, mu, logvar, pmu, plogvar, fn_mask, dct_m, idct_m)
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
train_losses += losses
total_num_sample += 1
# scheduler.step()
dt = time.time() - t_s
train_losses /= total_num_sample
# lr = optimizer.param_groups[0]['lr']
losses_str = ' '.join(['{}: {:.4f}'.format(x, y) for x, y in zip(loss_names, train_losses)])
logger.info('====> Epoch Test: {} Time: {:.2f} {}'.format(epoch, dt, losses_str))
for name, loss in zip(loss_names, train_losses):
tb_logger.add_scalars('vae_' + name, {'test': loss}, epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default='babel_v3_5_4_t1_50_10_10_1_others_all_act_float')
parser.add_argument('--mode', default='train')
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--is_other_act', action='store_true', default=False)
parser.add_argument('--n_other', type=int, default=1)
parser.add_argument('--is_transi', action='store_true', default=False)
parser.add_argument('--iter', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--gpu_index', type=int, default=0)
parser.add_argument('--N', type=int, default=10) # number of history and future frames for smoothness
parser.add_argument('--dct_n', type=int, default=5)
parser.add_argument('--t_pre_extra', type=int, default=0) # extra future poses for stopping
args = parser.parse_args()
"""setup"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
dtype = torch.float32
torch.set_default_dtype(dtype)
device = torch.device('cuda', index=args.gpu_index) if torch.cuda.is_available() else torch.device('cpu')
if torch.cuda.is_available():
torch.cuda.set_device(args.gpu_index)
cfg = Config(args.cfg, test=args.test)
tb_logger = SummaryWriter(cfg.tb_dir) if args.mode == 'train' else None
logger = create_logger(os.path.join(cfg.log_dir, 'log.txt'))
"""parameter"""
mode = args.mode
nz = cfg.nz
t_his = cfg.t_his
t_pred = cfg.t_pred
if 'smooth_N' in cfg.vae_specs:
args.N = cfg.vae_specs['smooth_N']
if 'dct_n' in cfg.vae_specs:
args.dct_n = cfg.vae_specs['dct_n']
if 't_pre_extra' in cfg.vae_specs:
args.t_pre_extra = cfg.vae_specs['t_pre_extra']
if 'is_other_act' in cfg.vae_specs:
args.is_other_act = cfg.vae_specs['is_other_act']
cfg.vae_specs['others_all_act'] = cfg.vae_specs.get('others_all_act',False)
logger.info(cfg)
"""data"""
if cfg.dataset == 'babel':
dataset_cls = DatasetBabel
dataset = dataset_cls(args.mode, t_his, t_pred, actions='all', use_vel=cfg.use_vel,
acts=cfg.vae_specs['actions'] if 'actions' in cfg.vae_specs else None,
max_len=cfg.vae_specs['max_len'] if 'max_len' in cfg.vae_specs else None,
min_len=cfg.vae_specs['min_len'] if 'min_len' in cfg.vae_specs else None,
is_6d=cfg.vae_specs['is_6d'] if 'is_6d' in cfg.vae_specs else False,
data_file=cfg.vae_specs['data_file'] if 'data_file' in cfg.vae_specs else None,
w_transi=cfg.vae_specs['w_transi'] if 'w_transi' in cfg.vae_specs else False)
dataset_test = dataset_cls('test', t_his, t_pred, actions='all', use_vel=cfg.use_vel,
acts=cfg.vae_specs['actions'] if 'actions' in cfg.vae_specs else None,
max_len=cfg.vae_specs['max_len'] if 'max_len' in cfg.vae_specs else None,
min_len=cfg.vae_specs['min_len'] if 'min_len' in cfg.vae_specs else None,
is_6d=cfg.vae_specs['is_6d'] if 'is_6d' in cfg.vae_specs else False,
data_file=cfg.vae_specs['data_file'] if 'data_file' in cfg.vae_specs else None,
w_transi=cfg.vae_specs['w_transi'] if 'w_transi' in cfg.vae_specs else False)
logger.info(f'Training data sequences {dataset.data_len:d}.')
logger.info(f'Testing data sequences {dataset_test.data_len:d}.')
if cfg.normalize_data:
dataset.normalize_data()
"""model"""
model = get_action_vae_model(cfg, 60, max_len=dataset.max_len - cfg.t_his + cfg.vae_specs['t_pre_extra'])
optimizer = optim.Adam(model.parameters(), lr=cfg.vae_lr)
scheduler = get_scheduler(optimizer, policy='lambda', nepoch_fix=cfg.num_vae_epoch_fix, nepoch=cfg.num_vae_epoch)
logger.info(">>> total params: {:.2f}M".format(sum(p.numel() for p in list(model.parameters())) / 1000000.0))
if args.iter > 0:
cp_path = cfg.vae_model_path % args.iter
print('loading model from checkpoint: %s' % cp_path)
model_cp = pickle.load(open(cp_path, "rb"))
model.load_state_dict(model_cp['model_dict'])
if mode == 'train':
model.to(device)
# model.train()
for i in range(args.iter, cfg.num_vae_epoch):
model.train()
train(i)
# model.eval()
# test(i)
if cfg.save_model_interval > 0 and (i + 1) % cfg.save_model_interval == 0:
with to_cpu(model):
cp_path = cfg.vae_model_path % (i + 1)
model_cp = {'model_dict': model.state_dict(), 'meta': {'std': dataset.std, 'mean': dataset.mean}}
pickle.dump(model_cp, open(cp_path, 'wb'))