-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConceptsImpactEffort.Rmd
58 lines (45 loc) · 1.42 KB
/
ConceptsImpactEffort.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
title: "Home buying and selling"
author: "David Thompson"
date: "13/12/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Analysis
Given a list of concepts, with an effort and impact score, demonstrate the difference
## Step 1: Import
Import concepts
```{r load data}
concepts <- read.csv("data/concepts.csv")
```
## Step 2: Verify data
```{r look at data}
head(concepts)
```
```{r prep data}
# In the data source a higher effort score means low effort - we want to invert these so that we can see
# high effort and high impact in the top right, and low effort and low impact in the bottom left
concepts$Effort = 70 - concepts$Effort
head(concepts)
```
## Step 3: Install and load the 'ggplot2' package
```{r loading and installing ggplot2, echo=FALSE, message=FALSE}
install.packages('ggplot2')
install.packages("ggrepel")
library(ggplot2)
library(ggrepel)
```
## Step 4: Making a Scatter Plot
```{r}
ggplot(concepts, aes(x = Effort, y = Impact, label = Concept, color = Concept)) +
geom_point() +
lims(x = c(10, 60), y = c(10, 60)) +
geom_vline(xintercept = 35) + geom_hline(yintercept = 35) +
geom_label_repel() +
xlab("Effort (0 - Easier, 70 - Difficult)") +
ylab("Impact (0 - Low, 70 - High)") +
labs(title = "Scatterplot of HBAS Concepts: Effort and Impact", subtitle = "Concepts toward the top right are more effort, higher impact")
ggsave("concepts.png")
```