-
Notifications
You must be signed in to change notification settings - Fork 175
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ADD][FEAT] HTFPersonDatapoint plot functions
- Loading branch information
Showing
1 changed file
with
137 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import os | ||
from typing import Dict | ||
from typing import Tuple | ||
from typing import Union | ||
from typing import Literal | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
from hourglass_tensorflow.types import HTFPersonDatapoint | ||
|
||
# region Color Maps | ||
COLOR_MAP = { | ||
0: "red", | ||
1: "blue", | ||
2: "green", | ||
3: "yellow", | ||
4: "purple", | ||
5: "cyan", | ||
6: "magenta", | ||
7: "orange", | ||
8: "dodgerblue", | ||
9: "lime", | ||
10: "gold", | ||
11: "violet", | ||
12: "pink", | ||
13: "teal", | ||
14: "lightcoral", | ||
15: "peru", | ||
} | ||
|
||
LIMB_COLORS = { | ||
"head": COLOR_MAP[0], | ||
"r_ankle_knee": COLOR_MAP[1], | ||
"r_knee_hip": COLOR_MAP[2], | ||
"r_hip_pelvis": COLOR_MAP[3], | ||
"l_hip_pelvis": COLOR_MAP[4], | ||
"l_knee_hip": COLOR_MAP[5], | ||
"l_ankle_knee": COLOR_MAP[6], | ||
"pelvis_thorax": COLOR_MAP[7], | ||
"thorax_neck": COLOR_MAP[8], | ||
"r_wrist_elbow": COLOR_MAP[9], | ||
"r_elbow_shoulder": COLOR_MAP[10], | ||
"l_elbow_shoulder": COLOR_MAP[11], | ||
"l_wrist_elbow": COLOR_MAP[12], | ||
"l_shoulder_neck": COLOR_MAP[13], | ||
"r_shoulder_neck": COLOR_MAP[14], | ||
} | ||
|
||
# endregion | ||
|
||
# region Limbs | ||
LIMBS = { | ||
"head": (8, 9), | ||
"r_ankle_knee": (0, 1), | ||
"r_knee_hip": (1, 2), | ||
"r_hip_pelvis": (2, 6), | ||
"l_hip_pelvis": (3, 6), | ||
"l_knee_hip": (4, 3), | ||
"l_ankle_knee": (5, 4), | ||
"pelvis_thorax": (6, 7), | ||
"thorax_neck": (7, 8), | ||
"r_wrist_elbow": (10, 11), | ||
"r_elbow_shoulder": (11, 12), | ||
"l_elbow_shoulder": (13, 14), | ||
"l_wrist_elbow": (14, 15), | ||
"l_shoulder_neck": (13, 8), | ||
"r_shoulder_neck": (12, 8), | ||
} | ||
|
||
# endregion | ||
|
||
# region Type Hints | ||
JointPlotModes = Union[Literal["joints"], Literal["limbs"], Literal["dots"]] | ||
|
||
# endregion | ||
|
||
|
||
def plot_sample_with_joint( | ||
image, | ||
joints: Dict[int, Tuple[int, int]], | ||
colors=COLOR_MAP, | ||
mode: JointPlotModes = "joints", | ||
limbs: Dict[str, Tuple[int, int]] = LIMBS, | ||
limb_colors: Dict[str, str] = LIMB_COLORS, | ||
): | ||
scatters = [] | ||
lines = [] | ||
if "dots" in mode: | ||
scatters = [([[j[0]], [j[1]]], {"color": colors[0]}) for j in joints.values()] | ||
if "joints" in mode: | ||
scatters += [ | ||
([[j[0]], [j[1]]], {"color": colors[jid]}) for jid, j in joints.items() | ||
] | ||
if "limbs" in mode: | ||
lines += [ | ||
( | ||
[ | ||
[joints[limb_joints[0]][0], joints[limb_joints[1]][0]], | ||
[joints[limb_joints[0]][1], joints[limb_joints[1]][1]], | ||
], | ||
{"color": limb_colors[limb_name]}, | ||
) | ||
for limb_name, limb_joints in limbs.items() | ||
if joints.get(limb_joints[0]) and joints.get(limb_joints[1]) | ||
] | ||
|
||
fig, ax = plt.subplots() | ||
_ = ax.imshow(image) | ||
for pos_scatter, kw_scatter in scatters: | ||
ax.scatter(*pos_scatter, **kw_scatter) | ||
for pos_line, kw_lines in lines: | ||
ax.plot(*pos_line, **kw_lines) | ||
plt.show() | ||
|
||
|
||
def plot_datapoint( | ||
datapoint: HTFPersonDatapoint, | ||
colors=COLOR_MAP, | ||
image_path="", | ||
mode: JointPlotModes = "joints", | ||
limbs=LIMBS, | ||
limb_colors=LIMB_COLORS, | ||
): | ||
image_path = os.path.join(image_path, datapoint.source_image) | ||
image = plt.imread(image_path) | ||
if isinstance(datapoint.joints, list): | ||
joints = {j.id: (j.x, j.y) for j in datapoint.joints} | ||
else: | ||
joints = datapoint.joints | ||
plot_sample_with_joint( | ||
image=image, | ||
joints=joints, | ||
colors=colors, | ||
mode=mode, | ||
limbs=limbs, | ||
limb_colors=limb_colors, | ||
) |