-
Notifications
You must be signed in to change notification settings - Fork 9
/
data_generator.py
148 lines (114 loc) · 5.59 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import cv2
import numpy as np
import os
import random
import time
from PIL import Image,ImageDraw,ImageFont
from data_util import GeneratorEnqueuer
def load_dictionary(character_file = './tag.txt'):
character_dictionary = {}
for line in open(character_file, 'r', encoding='gbk'):
classnum, character = line.split(" ")
assert (classnum is not None)
assert (character is not None)
character_dictionary[str(classnum)] = str(character)
return character_dictionary
def generator_on_the_fly(image_width=2048,image_height=64,image_channel=3, batch_size=10,display=False):
character_width = 64
character_height = 64
character_channel = image_channel
max_character_num=26
max_character_space=8
max_character_before=character_width*2
character_type_tuple=('./font_style/simfang.ttf','./font_style/simhei.ttf','./font_style/simkai.ttf' ,'./font_style/simsun.ttc','./font_style/Songti_SC_Regular.ttf','./font_style/STKAITI.TTF','./font_style/STSONG.TTF')
character_dictionary=load_dictionary()
while True:
try:
gene_images=np.zeros((batch_size,image_height,image_width,image_channel),np.float32)
gene_labels=np.zeros((batch_size,image_width),np.float32)
for i in range(batch_size):
character_nums = random.randint(1, max_character_num)
character_space = random.randint(max_character_space - 4, max_character_space + 4)
character_before = random.randint(0, max_character_before)
character_type = character_type_tuple[random.randint(0, 6)]
font = ImageFont.truetype(character_type, character_height)
image = Image.new('RGB', (image_width, image_height), (255, 255, 255))
x1 = character_before
y1 = 0
x2 = x1 + character_width
y2 = character_height
for character_num in range(character_nums):
char_num = random.randint(0, len(character_dictionary) - 1)
image_roi = image.crop((x1, y1, x2, y2))
draw = ImageDraw.Draw(image_roi)
if character_type == 'simfang.ttf' or character_type == 'simhei.ttf' or character_type == 'simkai.ttf' or character_type == 'simsun.ttc':
draw.text((0, 0), character_dictionary[str(char_num)], (0, 0, 0), font=font)
else:
draw.text((0, -12), character_dictionary[str(char_num)], (0, 0, 0), font=font)
image.paste(image_roi, (x1, y1, x2, y2))
gene_labels[i,x1:x2]=1
if display==True:
drawObject = ImageDraw.Draw(image)
drawObject.rectangle((x1, y1, x2, y2),fill=None,outline='red')
x1 = x2 + character_space
x2 = x1 + character_width
if display==True:
print("labels:",gene_labels[i,:])
cv2.imshow("img",np.asarray(image))
cv2.waitKey()
gene_images[i,:,:,:]=image
del image
gene_images=gene_images*1.0/255
yield gene_images,gene_labels
except Exception as e:
import traceback
traceback.print_exc()
continue
def generator_from_folder(image_width=2048,image_height=64,image_channel=3, batch_size=10):
pics_list = []
labels_list = []
img_dirs = './DATA/IMAGES/'
label_dirs='./DATA/LABELS/'
imgs_names=os.listdir(img_dirs)
labels_names=os.listdir(label_dirs)
while True:
try:
gene_images=np.zeros((batch_size,image_height,image_width,image_channel),np.float32)
gene_labels=np.zeros((batch_size,image_width),np.float32)
m = random.randint(0, len(imgs_names)-batch_size-1)
for i in range(batch_size):
img = cv2.imread(os.path.join(img_dirs,imgs_names[m+i]))
img = cv2.resize(img, (image_width,image_height))
img=1.0*img/255
f=open(os.path.join(label_dirs,labels_names[m+i]))
line=f.read()
line=line.strip('\n')
line_label=line.split(' ')[:image_width]
line_label=np.asarray(line_label,np.float32)
f.close()
gene_images[i,:,:,:]=img
gene_labels[i,:]=line_label
yield gene_images,gene_labels
except Exception as e:
import traceback
traceback.print_exc()
continue
def get_batch(num_workers, **kwargs):
try:
enqueuer = GeneratorEnqueuer(generator_on_the_fly(**kwargs), use_multiprocessing=False)
#enqueuer = GeneratorEnqueuer(generator_from_folder(**kwargs), use_multiprocessing=False)
print('Generator use 10 batches for buffering, this may take a while, you can tune this yourself.')
enqueuer.start(max_queue_size=100, workers=num_workers)
generator_output = None
while True:
while enqueuer.is_running():
if not enqueuer.queue.empty():
generator_output = enqueuer.queue.get()
break
else:
time.sleep(0.01)
yield generator_output
generator_output = None
finally:
if enqueuer is not None:
enqueuer.stop()