-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathkeys.py
1631 lines (1414 loc) · 64 KB
/
keys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Primary classes for performing signing and verification operations.
"""
import binascii
from hashlib import sha1
import os
from six import PY2
from . import ecdsa, eddsa
from . import der, ssh
from . import rfc6979
from . import ellipticcurve
from .curves import NIST192p, Curve, Ed25519, Ed448
from .ecdsa import RSZeroError
from .util import string_to_number, number_to_string, randrange
from .util import sigencode_string, sigdecode_string, bit_length
from .util import (
oid_ecPublicKey,
encoded_oid_ecPublicKey,
oid_ecDH,
oid_ecMQV,
MalformedSignature,
)
from ._compat import normalise_bytes
from .errors import MalformedPointError
from .ellipticcurve import PointJacobi, CurveEdTw
__all__ = [
"BadSignatureError",
"BadDigestError",
"VerifyingKey",
"SigningKey",
"MalformedPointError",
]
class BadSignatureError(Exception):
"""
Raised when verification of signature failed.
Will be raised irrespective of reason of the failure:
* the calculated or provided hash does not match the signature
* the signature does not match the curve/public key
* the encoding of the signature is malformed
* the size of the signature does not match the curve of the VerifyingKey
"""
pass
class BadDigestError(Exception):
"""Raised in case the selected hash is too large for the curve."""
pass
def _truncate_and_convert_digest(digest, curve, allow_truncate):
"""Truncates and converts digest to an integer."""
if not allow_truncate:
if len(digest) > curve.baselen:
raise BadDigestError(
"this curve ({0}) is too short "
"for the length of your digest ({1})".format(
curve.name, 8 * len(digest)
)
)
else:
digest = digest[: curve.baselen]
number = string_to_number(digest)
if allow_truncate:
max_length = bit_length(curve.order)
# we don't use bit_length(number) as that truncates leading zeros
length = len(digest) * 8
# See NIST FIPS 186-4:
#
# When the length of the output of the hash function is greater
# than N (i.e., the bit length of q), then the leftmost N bits of
# the hash function output block shall be used in any calculation
# using the hash function output during the generation or
# verification of a digital signature.
#
# as such, we need to shift-out the low-order bits:
number >>= max(0, length - max_length)
return number
class VerifyingKey(object):
"""
Class for handling keys that can verify signatures (public keys).
:ivar `~ecdsa.curves.Curve` ~.curve: The Curve over which all the
cryptographic operations will take place
:ivar default_hashfunc: the function that will be used for hashing the
data. Should implement the same API as hashlib.sha1
:vartype default_hashfunc: callable
:ivar pubkey: the actual public key
:vartype pubkey: ~ecdsa.ecdsa.Public_key
"""
def __init__(self, _error__please_use_generate=None):
"""Unsupported, please use one of the classmethods to initialise."""
if not _error__please_use_generate:
raise TypeError(
"Please use VerifyingKey.generate() to construct me"
)
self.curve = None
self.default_hashfunc = None
self.pubkey = None
def __repr__(self):
pub_key = self.to_string("compressed")
if self.default_hashfunc:
hash_name = self.default_hashfunc().name
else:
hash_name = "None"
return "VerifyingKey.from_string({0!r}, {1!r}, {2})".format(
pub_key, self.curve, hash_name
)
def __eq__(self, other):
"""Return True if the points are identical, False otherwise."""
if isinstance(other, VerifyingKey):
return self.curve == other.curve and self.pubkey == other.pubkey
return NotImplemented
def __ne__(self, other):
"""Return False if the points are identical, True otherwise."""
return not self == other
@classmethod
def from_public_point(
cls, point, curve=NIST192p, hashfunc=sha1, validate_point=True
):
"""
Initialise the object from a Point object.
This is a low-level method, generally you will not want to use it.
:param point: The point to wrap around, the actual public key
:type point: ~ecdsa.ellipticcurve.AbstractPoint
:param curve: The curve on which the point needs to reside, defaults
to NIST192p
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
verification, needs to implement the same interface
as :py:class:`hashlib.sha1`
:type hashfunc: callable
:type bool validate_point: whether to check if the point lays on curve
should always be used if the public point is not a result
of our own calculation
:raises MalformedPointError: if the public point does not lay on the
curve
:return: Initialised VerifyingKey object
:rtype: VerifyingKey
"""
self = cls(_error__please_use_generate=True)
if isinstance(curve.curve, CurveEdTw):
raise ValueError("Method incompatible with Edwards curves")
if not isinstance(point, ellipticcurve.PointJacobi):
point = ellipticcurve.PointJacobi.from_affine(point)
self.curve = curve
self.default_hashfunc = hashfunc
try:
self.pubkey = ecdsa.Public_key(
curve.generator, point, validate_point
)
except ecdsa.InvalidPointError:
raise MalformedPointError("Point does not lay on the curve")
self.pubkey.order = curve.order
return self
def precompute(self, lazy=False):
"""
Precompute multiplication tables for faster signature verification.
Calling this method will cause the library to precompute the
scalar multiplication tables, used in signature verification.
While it's an expensive operation (comparable to performing
as many signatures as the bit size of the curve, i.e. 256 for NIST256p)
it speeds up verification 2 times. You should call this method
if you expect to verify hundreds of signatures (or more) using the same
VerifyingKey object.
Note: You should call this method only once, this method generates a
new precomputation table every time it's called.
:param bool lazy: whether to calculate the precomputation table now
(if set to False) or if it should be delayed to the time of first
use (when set to True)
"""
if isinstance(self.curve.curve, CurveEdTw):
pt = self.pubkey.point
self.pubkey.point = ellipticcurve.PointEdwards(
pt.curve(),
pt.x(),
pt.y(),
1,
pt.x() * pt.y(),
self.curve.order,
generator=True,
)
else:
self.pubkey.point = ellipticcurve.PointJacobi.from_affine(
self.pubkey.point, True
)
# as precomputation in now delayed to the time of first use of the
# point and we were asked specifically to precompute now, make
# sure the precomputation is performed now to preserve the behaviour
if not lazy:
self.pubkey.point * 2
@classmethod
def from_string(
cls,
string,
curve=NIST192p,
hashfunc=sha1,
validate_point=True,
valid_encodings=None,
):
"""
Initialise the object from byte encoding of public key.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
It also works with the native encoding of Ed25519 and Ed448 public
keys (technically those are compressed, but encoded differently than
in other signature systems).
Note, while the method is named "from_string" it's a misnomer from
Python 2 days when there were no binary strings. In Python 3 the
input needs to be a bytes-like object.
:param string: single point encoding of the public key
:type string: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
verification, needs to implement the same interface as
hashlib.sha1. Ignored for EdDSA.
:type hashfunc: callable
:param validate_point: whether to verify that the point lays on the
provided curve or not, defaults to True. Ignored for EdDSA.
:type validate_point: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
Ignored for EdDSA.
:type valid_encodings: :term:`set-like object`
:raises MalformedPointError: if the public point does not lay on the
curve or the encoding is invalid
:return: Initialised VerifyingKey object
:rtype: VerifyingKey
"""
if isinstance(curve.curve, CurveEdTw):
self = cls(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = None # ignored for EdDSA
try:
self.pubkey = eddsa.PublicKey(curve.generator, string)
except ValueError:
raise MalformedPointError("Malformed point for the curve")
return self
point = PointJacobi.from_bytes(
curve.curve,
string,
validate_encoding=validate_point,
valid_encodings=valid_encodings,
)
return cls.from_public_point(point, curve, hashfunc, validate_point)
@classmethod
def from_pem(
cls,
string,
hashfunc=sha1,
valid_encodings=None,
valid_curve_encodings=None,
):
"""
Initialise from public key stored in :term:`PEM` format.
The PEM header of the key should be ``BEGIN PUBLIC KEY``.
See the :func:`~VerifyingKey.from_der()` method for details of the
format supported.
Note: only a single PEM object decoding is supported in provided
string.
:param string: text with PEM-encoded public ECDSA key
:type string: str
:param valid_encodings: list of allowed point encodings.
By default :term:`uncompressed`, :term:`compressed`, and
:term:`hybrid`. To read malformed files, include
:term:`raw encoding` with ``raw`` in the list.
:type valid_encodings: :term:`set-like object`
:param valid_curve_encodings: list of allowed encoding formats
for curve parameters. By default (``None``) all are supported:
``named_curve`` and ``explicit``.
:type valid_curve_encodings: :term:`set-like object`
:return: Initialised VerifyingKey object
:rtype: VerifyingKey
"""
return cls.from_der(
der.unpem(string),
hashfunc=hashfunc,
valid_encodings=valid_encodings,
valid_curve_encodings=valid_curve_encodings,
)
@classmethod
def from_der(
cls,
string,
hashfunc=sha1,
valid_encodings=None,
valid_curve_encodings=None,
):
"""
Initialise the key stored in :term:`DER` format.
The expected format of the key is the SubjectPublicKeyInfo structure
from RFC5912 (for RSA keys, it's known as the PKCS#1 format)::
SubjectPublicKeyInfo {PUBLIC-KEY: IOSet} ::= SEQUENCE {
algorithm AlgorithmIdentifier {PUBLIC-KEY, {IOSet}},
subjectPublicKey BIT STRING
}
Note: only public EC keys are supported by this method. The
SubjectPublicKeyInfo.algorithm.algorithm field must specify
id-ecPublicKey (see RFC3279).
Only the named curve encoding is supported, thus the
SubjectPublicKeyInfo.algorithm.parameters field needs to be an
object identifier. A sequence in that field indicates an explicit
parameter curve encoding, this format is not supported. A NULL object
in that field indicates an "implicitlyCA" encoding, where the curve
parameters come from CA certificate, those, again, are not supported.
:param string: binary string with the DER encoding of public ECDSA key
:type string: bytes-like object
:param valid_encodings: list of allowed point encodings.
By default :term:`uncompressed`, :term:`compressed`, and
:term:`hybrid`. To read malformed files, include
:term:`raw encoding` with ``raw`` in the list.
:type valid_encodings: :term:`set-like object`
:param valid_curve_encodings: list of allowed encoding formats
for curve parameters. By default (``None``) all are supported:
``named_curve`` and ``explicit``.
:type valid_curve_encodings: :term:`set-like object`
:return: Initialised VerifyingKey object
:rtype: VerifyingKey
"""
if valid_encodings is None:
valid_encodings = set(["uncompressed", "compressed", "hybrid"])
string = normalise_bytes(string)
# [[oid_ecPublicKey,oid_curve], point_str_bitstring]
s1, empty = der.remove_sequence(string)
if empty != b"":
raise der.UnexpectedDER(
"trailing junk after DER pubkey: %s" % binascii.hexlify(empty)
)
s2, point_str_bitstring = der.remove_sequence(s1)
# s2 = oid_ecPublicKey,oid_curve
oid_pk, rest = der.remove_object(s2)
if oid_pk in (Ed25519.oid, Ed448.oid):
if oid_pk == Ed25519.oid:
curve = Ed25519
else:
assert oid_pk == Ed448.oid
curve = Ed448
point_str, empty = der.remove_bitstring(point_str_bitstring, 0)
if empty:
raise der.UnexpectedDER("trailing junk after public key")
return cls.from_string(point_str, curve, None)
if not oid_pk == oid_ecPublicKey:
raise der.UnexpectedDER(
"Unexpected object identifier in DER "
"encoding: {0!r}".format(oid_pk)
)
curve = Curve.from_der(rest, valid_curve_encodings)
point_str, empty = der.remove_bitstring(point_str_bitstring, 0)
if empty != b"":
raise der.UnexpectedDER(
"trailing junk after pubkey pointstring: %s"
% binascii.hexlify(empty)
)
# raw encoding of point is invalid in DER files
if len(point_str) == curve.verifying_key_length:
raise der.UnexpectedDER("Malformed encoding of public point")
return cls.from_string(
point_str,
curve,
hashfunc=hashfunc,
valid_encodings=valid_encodings,
)
@classmethod
def from_public_key_recovery(
cls,
signature,
data,
curve,
hashfunc=sha1,
sigdecode=sigdecode_string,
allow_truncate=True,
):
"""
Return keys that can be used as verifiers of the provided signature.
Tries to recover the public key that can be used to verify the
signature, usually returns two keys like that.
:param signature: the byte string with the encoded signature
:type signature: bytes-like object
:param data: the data to be hashed for signature verification
:type data: bytes-like object
:param curve: the curve over which the signature was performed
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
verification, needs to implement the same interface as hashlib.sha1
:type hashfunc: callable
:param sigdecode: Callable to define the way the signature needs to
be decoded to an object, needs to handle `signature` as the
first parameter, the curve order (an int) as the second and return
a tuple with two integers, "r" as the first one and "s" as the
second one. See :func:`ecdsa.util.sigdecode_string` and
:func:`ecdsa.util.sigdecode_der` for examples.
:param bool allow_truncate: if True, the provided hashfunc can generate
values larger than the bit size of the order of the curve, the
extra bits (at the end of the digest) will be truncated.
:type sigdecode: callable
:return: Initialised VerifyingKey objects
:rtype: list of VerifyingKey
"""
if isinstance(curve.curve, CurveEdTw):
raise ValueError("Method unsupported for Edwards curves")
data = normalise_bytes(data)
digest = hashfunc(data).digest()
return cls.from_public_key_recovery_with_digest(
signature,
digest,
curve,
hashfunc=hashfunc,
sigdecode=sigdecode,
allow_truncate=allow_truncate,
)
@classmethod
def from_public_key_recovery_with_digest(
cls,
signature,
digest,
curve,
hashfunc=sha1,
sigdecode=sigdecode_string,
allow_truncate=False,
):
"""
Return keys that can be used as verifiers of the provided signature.
Tries to recover the public key that can be used to verify the
signature, usually returns two keys like that.
:param signature: the byte string with the encoded signature
:type signature: bytes-like object
:param digest: the hash value of the message signed by the signature
:type digest: bytes-like object
:param curve: the curve over which the signature was performed
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
verification, needs to implement the same interface as hashlib.sha1
:type hashfunc: callable
:param sigdecode: Callable to define the way the signature needs to
be decoded to an object, needs to handle `signature` as the
first parameter, the curve order (an int) as the second and return
a tuple with two integers, "r" as the first one and "s" as the
second one. See :func:`ecdsa.util.sigdecode_string` and
:func:`ecdsa.util.sigdecode_der` for examples.
:type sigdecode: callable
:param bool allow_truncate: if True, the provided hashfunc can generate
values larger than the bit size of the order of the curve (and
the length of provided `digest`), the extra bits (at the end of the
digest) will be truncated.
:return: Initialised VerifyingKey object
:rtype: VerifyingKey
"""
if isinstance(curve.curve, CurveEdTw):
raise ValueError("Method unsupported for Edwards curves")
generator = curve.generator
r, s = sigdecode(signature, generator.order())
sig = ecdsa.Signature(r, s)
digest = normalise_bytes(digest)
digest_as_number = _truncate_and_convert_digest(
digest, curve, allow_truncate
)
pks = sig.recover_public_keys(digest_as_number, generator)
# Transforms the ecdsa.Public_key object into a VerifyingKey
verifying_keys = [
cls.from_public_point(pk.point, curve, hashfunc) for pk in pks
]
return verifying_keys
def to_string(self, encoding="raw"):
"""
Convert the public key to a byte string.
The method by default uses the :term:`raw encoding` (specified
by `encoding="raw"`. It can also output keys in :term:`uncompressed`,
:term:`compressed` and :term:`hybrid` formats.
Remember that the curve identification is not part of the encoding
so to decode the point using :func:`~VerifyingKey.from_string`, curve
needs to be specified.
Note: while the method is called "to_string", it's a misnomer from
Python 2 days when character strings and byte strings shared type.
On Python 3 the returned type will be `bytes`.
:return: :term:`raw encoding` of the public key (public point) on the
curve
:rtype: bytes
"""
assert encoding in ("raw", "uncompressed", "compressed", "hybrid")
return self.pubkey.point.to_bytes(encoding)
def to_pem(
self, point_encoding="uncompressed", curve_parameters_encoding=None
):
"""
Convert the public key to the :term:`PEM` format.
The PEM header of the key will be ``BEGIN PUBLIC KEY``.
The format of the key is described in the
:func:`~VerifyingKey.from_der()` method.
This method supports only "named curve" encoding of keys.
:param str point_encoding: specification of the encoding format
of public keys. "uncompressed" is most portable, "compressed" is
smallest. "hybrid" is uncommon and unsupported by most
implementations, it is as big as "uncompressed".
:param str curve_parameters_encoding: the encoding for curve parameters
to use, by default tries to use ``named_curve`` encoding,
if that is not possible, falls back to ``explicit`` encoding.
:return: portable encoding of the public key
:rtype: bytes
.. warning:: The PEM is encoded to US-ASCII, it needs to be
re-encoded if the system is incompatible (e.g. uses UTF-16)
"""
return der.topem(
self.to_der(point_encoding, curve_parameters_encoding),
"PUBLIC KEY",
)
def to_der(
self, point_encoding="uncompressed", curve_parameters_encoding=None
):
"""
Convert the public key to the :term:`DER` format.
The format of the key is described in the
:func:`~VerifyingKey.from_der()` method.
This method supports only "named curve" encoding of keys.
:param str point_encoding: specification of the encoding format
of public keys. "uncompressed" is most portable, "compressed" is
smallest. "hybrid" is uncommon and unsupported by most
implementations, it is as big as "uncompressed".
:param str curve_parameters_encoding: the encoding for curve parameters
to use, by default tries to use ``named_curve`` encoding,
if that is not possible, falls back to ``explicit`` encoding.
:return: DER encoding of the public key
:rtype: bytes
"""
if point_encoding == "raw":
raise ValueError("raw point_encoding not allowed in DER")
point_str = self.to_string(point_encoding)
if isinstance(self.curve.curve, CurveEdTw):
return der.encode_sequence(
der.encode_sequence(der.encode_oid(*self.curve.oid)),
der.encode_bitstring(bytes(point_str), 0),
)
return der.encode_sequence(
der.encode_sequence(
encoded_oid_ecPublicKey,
self.curve.to_der(curve_parameters_encoding, point_encoding),
),
# 0 is the number of unused bits in the
# bit string
der.encode_bitstring(point_str, 0),
)
def to_ssh(self):
"""
Convert the public key to the SSH format.
:return: SSH encoding of the public key
:rtype: bytes
"""
return ssh.serialize_public(
self.curve.name,
self.to_string(),
)
def verify(
self,
signature,
data,
hashfunc=None,
sigdecode=sigdecode_string,
allow_truncate=True,
):
"""
Verify a signature made over provided data.
Will hash `data` to verify the signature.
By default expects signature in :term:`raw encoding`. Can also be used
to verify signatures in ASN.1 DER encoding by using
:func:`ecdsa.util.sigdecode_der`
as the `sigdecode` parameter.
:param signature: encoding of the signature
:type signature: sigdecode method dependent
:param data: data signed by the `signature`, will be hashed using
`hashfunc`, if specified, or default hash function
:type data: :term:`bytes-like object`
:param hashfunc: The default hash function that will be used for
verification, needs to implement the same interface as hashlib.sha1
:type hashfunc: callable
:param sigdecode: Callable to define the way the signature needs to
be decoded to an object, needs to handle `signature` as the
first parameter, the curve order (an int) as the second and return
a tuple with two integers, "r" as the first one and "s" as the
second one. See :func:`ecdsa.util.sigdecode_string` and
:func:`ecdsa.util.sigdecode_der` for examples.
:type sigdecode: callable
:param bool allow_truncate: if True, the provided digest can have
bigger bit-size than the order of the curve, the extra bits (at
the end of the digest) will be truncated. Use it when verifying
SHA-384 output using NIST256p or in similar situations. Defaults to
True.
:raises BadSignatureError: if the signature is invalid or malformed
:return: True if the verification was successful
:rtype: bool
"""
# signature doesn't have to be a bytes-like-object so don't normalise
# it, the decoders will do that
data = normalise_bytes(data)
if isinstance(self.curve.curve, CurveEdTw):
signature = normalise_bytes(signature)
try:
return self.pubkey.verify(data, signature)
except (ValueError, MalformedPointError) as e:
raise BadSignatureError("Signature verification failed", e)
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.verify_digest(signature, digest, sigdecode, allow_truncate)
def verify_digest(
self,
signature,
digest,
sigdecode=sigdecode_string,
allow_truncate=False,
):
"""
Verify a signature made over provided hash value.
By default expects signature in :term:`raw encoding`. Can also be used
to verify signatures in ASN.1 DER encoding by using
:func:`ecdsa.util.sigdecode_der`
as the `sigdecode` parameter.
:param signature: encoding of the signature
:type signature: sigdecode method dependent
:param digest: raw hash value that the signature authenticates.
:type digest: :term:`bytes-like object`
:param sigdecode: Callable to define the way the signature needs to
be decoded to an object, needs to handle `signature` as the
first parameter, the curve order (an int) as the second and return
a tuple with two integers, "r" as the first one and "s" as the
second one. See :func:`ecdsa.util.sigdecode_string` and
:func:`ecdsa.util.sigdecode_der` for examples.
:type sigdecode: callable
:param bool allow_truncate: if True, the provided digest can have
bigger bit-size than the order of the curve, the extra bits (at
the end of the digest) will be truncated. Use it when verifying
SHA-384 output using NIST256p or in similar situations.
:raises BadSignatureError: if the signature is invalid or malformed
:raises BadDigestError: if the provided digest is too big for the curve
associated with this VerifyingKey and allow_truncate was not set
:return: True if the verification was successful
:rtype: bool
"""
# signature doesn't have to be a bytes-like-object so don't normalise
# it, the decoders will do that
digest = normalise_bytes(digest)
number = _truncate_and_convert_digest(
digest,
self.curve,
allow_truncate,
)
try:
r, s = sigdecode(signature, self.pubkey.order)
except (der.UnexpectedDER, MalformedSignature) as e:
raise BadSignatureError("Malformed formatting of signature", e)
sig = ecdsa.Signature(r, s)
if self.pubkey.verifies(number, sig):
return True
raise BadSignatureError("Signature verification failed")
class SigningKey(object):
"""
Class for handling keys that can create signatures (private keys).
:ivar `~ecdsa.curves.Curve` curve: The Curve over which all the
cryptographic operations will take place
:ivar default_hashfunc: the function that will be used for hashing the
data. Should implement the same API as :py:class:`hashlib.sha1`
:ivar int baselen: the length of a :term:`raw encoding` of private key
:ivar `~ecdsa.keys.VerifyingKey` verifying_key: the public key
associated with this private key
:ivar `~ecdsa.ecdsa.Private_key` privkey: the actual private key
"""
def __init__(self, _error__please_use_generate=None):
"""Unsupported, please use one of the classmethods to initialise."""
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
self.curve = None
self.default_hashfunc = None
self.baselen = None
self.verifying_key = None
self.privkey = None
def __eq__(self, other):
"""Return True if the points are identical, False otherwise."""
if isinstance(other, SigningKey):
return (
self.curve == other.curve
and self.verifying_key == other.verifying_key
and self.privkey == other.privkey
)
return NotImplemented
def __ne__(self, other):
"""Return False if the points are identical, True otherwise."""
return not self == other
@classmethod
def _twisted_edwards_keygen(cls, curve, entropy):
"""Generate a private key on a Twisted Edwards curve."""
if not entropy:
entropy = os.urandom
random = entropy(curve.baselen)
private_key = eddsa.PrivateKey(curve.generator, random)
public_key = private_key.public_key()
verifying_key = VerifyingKey.from_string(
public_key.public_key(), curve
)
self = cls(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = None
self.baselen = curve.baselen
self.privkey = private_key
self.verifying_key = verifying_key
return self
@classmethod
def _weierstrass_keygen(cls, curve, entropy, hashfunc):
"""Generate a private key on a Weierstrass curve."""
secexp = randrange(curve.order, entropy)
return cls.from_secret_exponent(secexp, curve, hashfunc)
@classmethod
def generate(cls, curve=NIST192p, entropy=None, hashfunc=sha1):
"""
Generate a random private key.
:param curve: The curve on which the point needs to reside, defaults
to NIST192p
:type curve: ~ecdsa.curves.Curve
:param entropy: Source of randomness for generating the private keys,
should provide cryptographically secure random numbers if the keys
need to be secure. Uses os.urandom() by default.
:type entropy: callable
:param hashfunc: The default hash function that will be used for
signing, needs to implement the same interface
as hashlib.sha1
:type hashfunc: callable
:return: Initialised SigningKey object
:rtype: SigningKey
"""
if isinstance(curve.curve, CurveEdTw):
return cls._twisted_edwards_keygen(curve, entropy)
return cls._weierstrass_keygen(curve, entropy, hashfunc)
@classmethod
def from_secret_exponent(cls, secexp, curve=NIST192p, hashfunc=sha1):
"""
Create a private key from a random integer.
Note: it's a low level method, it's recommended to use the
:func:`~SigningKey.generate` method to create private keys.
:param int secexp: secret multiplier (the actual private key in ECDSA).
Needs to be an integer between 1 and the curve order.
:param curve: The curve on which the point needs to reside
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
signing, needs to implement the same interface
as hashlib.sha1
:type hashfunc: callable
:raises MalformedPointError: when the provided secexp is too large
or too small for the curve selected
:raises RuntimeError: if the generation of public key from private
key failed
:return: Initialised SigningKey object
:rtype: SigningKey
"""
if isinstance(curve.curve, CurveEdTw):
raise ValueError(
"Edwards keys don't support setting the secret scalar "
"(exponent) directly"
)
self = cls(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.baselen = curve.baselen
n = curve.order
if not 1 <= secexp < n:
raise MalformedPointError(
"Invalid value for secexp, expected integer "
"between 1 and {0}".format(n)
)
pubkey_point = curve.generator * secexp
if hasattr(pubkey_point, "scale"):
pubkey_point = pubkey_point.scale()
self.verifying_key = VerifyingKey.from_public_point(
pubkey_point, curve, hashfunc, False
)
pubkey = self.verifying_key.pubkey
self.privkey = ecdsa.Private_key(pubkey, secexp)
self.privkey.order = n
return self
@classmethod
def from_string(cls, string, curve=NIST192p, hashfunc=sha1):
"""
Decode the private key from :term:`raw encoding`.
Note: the name of this method is a misnomer coming from days of
Python 2, when binary strings and character strings shared a type.
In Python 3, the expected type is `bytes`.
:param string: the raw encoding of the private key
:type string: :term:`bytes-like object`
:param curve: The curve on which the point needs to reside
:type curve: ~ecdsa.curves.Curve
:param hashfunc: The default hash function that will be used for
signing, needs to implement the same interface
as hashlib.sha1
:type hashfunc: callable
:raises MalformedPointError: if the length of encoding doesn't match
the provided curve or the encoded values is too large
:raises RuntimeError: if the generation of public key from private
key failed
:return: Initialised SigningKey object
:rtype: SigningKey
"""
string = normalise_bytes(string)
if len(string) != curve.baselen:
raise MalformedPointError(
"Invalid length of private key, received {0}, "
"expected {1}".format(len(string), curve.baselen)
)
if isinstance(curve.curve, CurveEdTw):
self = cls(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = None # Ignored for EdDSA
self.baselen = curve.baselen
self.privkey = eddsa.PrivateKey(curve.generator, string)
self.verifying_key = VerifyingKey.from_string(
self.privkey.public_key().public_key(), curve
)
return self
secexp = string_to_number(string)
return cls.from_secret_exponent(secexp, curve, hashfunc)
@classmethod
def from_pem(cls, string, hashfunc=sha1, valid_curve_encodings=None):
"""
Initialise from key stored in :term:`PEM` format.
The PEM formats supported are the un-encrypted RFC5915
(the ssleay format) supported by OpenSSL, and the more common
un-encrypted RFC5958 (the PKCS #8 format).
The legacy format files have the header with the string
``BEGIN EC PRIVATE KEY``.
PKCS#8 files have the header ``BEGIN PRIVATE KEY``.
Encrypted files (ones that include the string
``Proc-Type: 4,ENCRYPTED``
right after the PEM header) are not supported.
See :func:`~SigningKey.from_der` for ASN.1 syntax of the objects in
this files.
:param string: text with PEM-encoded private ECDSA key
:type string: str
:param valid_curve_encodings: list of allowed encoding formats
for curve parameters. By default (``None``) all are supported:
``named_curve`` and ``explicit``.
:type valid_curve_encodings: :term:`set-like object`
:raises MalformedPointError: if the length of encoding doesn't match
the provided curve or the encoded values is too large
:raises RuntimeError: if the generation of public key from private
key failed
:raises UnexpectedDER: if the encoding of the PEM file is incorrect
:return: Initialised SigningKey object
:rtype: SigningKey
"""
if not PY2 and isinstance(string, str): # pragma: no branch
string = string.encode()
# The privkey pem may have multiple sections, commonly it also has
# "EC PARAMETERS", we need just "EC PRIVATE KEY". PKCS#8 should not
# have the "EC PARAMETERS" section; it's just "PRIVATE KEY".
private_key_index = string.find(b"-----BEGIN EC PRIVATE KEY-----")
if private_key_index == -1:
private_key_index = string.index(b"-----BEGIN PRIVATE KEY-----")
return cls.from_der(
der.unpem(string[private_key_index:]),
hashfunc,
valid_curve_encodings,
)
@classmethod
def from_der(cls, string, hashfunc=sha1, valid_curve_encodings=None):
"""
Initialise from key stored in :term:`DER` format.
The DER formats supported are the un-encrypted RFC5915
(the ssleay format) supported by OpenSSL, and the more common
un-encrypted RFC5958 (the PKCS #8 format).
Both formats contain an ASN.1 object following the syntax specified
in RFC5915::
ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(1) }} (ecPrivkeyVer1),
privateKey OCTET STRING,
parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
publicKey [1] BIT STRING OPTIONAL
}