forked from Logan-Lin/TALE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
161 lines (138 loc) · 5.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math
from itertools import zip_longest
import random
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.nn import init
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error
def gen_index_map(series, offset=0):
index_map = {origin: index + offset
for index, origin in enumerate(series.drop_duplicates())}
return index_map
def next_batch(data, batch_size):
data_length = len(data)
num_batches = math.ceil(data_length / batch_size)
for batch_index in range(num_batches):
start_index = batch_index * batch_size
end_index = min((batch_index + 1) * batch_size, data_length)
yield data[start_index:end_index]
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def shuffle_along_axis(a, axis):
idx = np.random.rand(*a.shape).argsort(axis=axis)
return np.take_along_axis(a,idx,axis=axis)
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
non_zero_index = (y_true > 0)
y_true = y_true[non_zero_index]
y_pred = y_pred[non_zero_index]
mape = np.abs((y_true - y_pred) / y_true)
mape[np.isinf(mape)] = 0
return np.mean(mape) * 100
def create_src_trg(full_seq, pre_len, fill_value):
src_seq, trg_seq = zip(*[[s[:-pre_len], s[-pre_len:]] for s in full_seq])
src_seq = np.transpose(np.array(list(zip_longest(*src_seq, fillvalue=fill_value))))
return src_seq, np.array(trg_seq)
def create_src(full_seq, fill_value):
return np.transpose(np.array(list(zip_longest(*full_seq, fillvalue=fill_value))))
def top_n_accuracy(truths, preds, n):
best_n = np.argsort(preds, axis=1)[:, -n:]
successes = 0
for i, truth in enumerate(truths):
if truth in best_n[i, :]:
successes += 1
return float(successes) / truths.shape[0]
def cal_classify_metric(pre_dists, pres, labels, top_n_list):
precision, recall, f1 = precision_score(labels, pres, average='macro'), \
recall_score(labels, pres, average='macro'), \
f1_score(labels, pres, average='macro')
if pre_dists is not None:
top_n_acc = [top_n_accuracy(labels, pre_dists, n) for n in top_n_list]
else:
top_n_acc = [accuracy_score(labels, pres)] + [-1.0 for _ in range(len(top_n_list)-1)]
score_series = pd.Series([precision, recall, f1] + top_n_acc,
index=['macro-pre', 'macro-rec', 'macro-f1'] + ['acc@{}'.format(n) for n in top_n_list])
return score_series
def cal_regression_metric(pres, labels):
mae, mse, mape = mean_absolute_error(labels, pres), mean_squared_error(labels, pres), \
mean_absolute_percentage_error(labels, pres)
rmse = math.sqrt(mse)
score_series = pd.Series([mae, mape, rmse], index=['mae', 'mape', 'rmse'])
return score_series
def weight_init(m):
"""
Usage:
model = Model()
model.apply(weight_init)
"""
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.Embedding):
embed_size = m.weight.size(-1)
if embed_size > 0:
init_range = 0.5/m.weight.size(-1)
init.uniform_(m.weight.data, -init_range, init_range)