forked from rapidsai/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
125 lines (96 loc) · 4.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import dgl
import random
import torch
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from load_data import *
from utils import *
from model import *
from sensors2graph import *
import torch.nn as nn
import argparse
import scipy.sparse as sp
parser = argparse.ArgumentParser(description='STGCN_WAVE')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--disablecuda', action='store_true', help='Disable CUDA')
parser.add_argument('--batch_size', type=int, default=50, help='batch size for training and validation (default: 50)')
parser.add_argument('--epochs', type=int, default=50, help='epochs for training (default: 50)')
parser.add_argument('--num_layers', type=int, default=9, help='number of layers')
parser.add_argument('--window', type=int, default=144, help='window length')
parser.add_argument('--sensorsfilepath', type=str, default='./data/sensor_graph/graph_sensor_ids.txt', help='sensors file path')
parser.add_argument('--disfilepath', type=str, default='./data/sensor_graph/distances_la_2012.csv', help='distance file path')
parser.add_argument('--tsfilepath', type=str, default='./data/metr-la.h5', help='ts file path')
parser.add_argument('--savemodelpath', type=str, default='stgcnwavemodel.pt', help='save model path')
parser.add_argument('--pred_len', type=int, default=5, help='how many steps away we want to predict')
parser.add_argument('--control_str', type=str, default='TNTSTNTST', help='model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer')
parser.add_argument('--channels', type=int, nargs='+', default=[1, 16, 32, 64, 32, 128], help='model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer')
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() and not args.disablecuda else torch.device("cpu")
with open(args.sensorsfilepath) as f:
sensor_ids = f.read().strip().split(',')
distance_df = pd.read_csv(args.disfilepath, dtype={'from': 'str', 'to': 'str'})
adj_mx = get_adjacency_matrix(distance_df, sensor_ids)
sp_mx = sp.coo_matrix(adj_mx)
G = dgl.from_scipy(sp_mx)
df = pd.read_hdf(args.tsfilepath)
num_samples, num_nodes = df.shape
tsdata = df.to_numpy()
n_his = args.window
save_path = args.savemodelpath
n_pred = args.pred_len
n_route = num_nodes
blocks = args.channels
# blocks = [1, 16, 32, 64, 32, 128]
drop_prob = 0
num_layers = args.num_layers
batch_size = args.batch_size
epochs = args.epochs
lr = args.lr
W = adj_mx
len_val = round(num_samples * 0.1)
len_train = round(num_samples * 0.7)
train = df[: len_train]
val = df[len_train: len_train + len_val]
test = df[len_train + len_val:]
scaler = StandardScaler()
train = scaler.fit_transform(train)
val = scaler.transform(val)
test = scaler.transform(test)
x_train, y_train = data_transform(train, n_his, n_pred, device)
x_val, y_val = data_transform(val, n_his, n_pred, device)
x_test, y_test = data_transform(test, n_his, n_pred, device)
train_data = torch.utils.data.TensorDataset(x_train, y_train)
train_iter = torch.utils.data.DataLoader(train_data, batch_size, shuffle=True)
val_data = torch.utils.data.TensorDataset(x_val, y_val)
val_iter = torch.utils.data.DataLoader(val_data, batch_size)
test_data = torch.utils.data.TensorDataset(x_test, y_test)
test_iter = torch.utils.data.DataLoader(test_data, batch_size)
loss = nn.MSELoss()
G = G.to(device)
model = STGCN_WAVE(blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str).to(device)
optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.7)
min_val_loss = np.inf
for epoch in range(1, epochs + 1):
l_sum, n = 0.0, 0
model.train()
for x, y in train_iter:
y_pred = model(x).view(len(x), -1)
l = loss(y_pred, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
l_sum += l.item() * y.shape[0]
n += y.shape[0]
scheduler.step()
val_loss = evaluate_model(model, loss, val_iter)
if val_loss < min_val_loss:
min_val_loss = val_loss
torch.save(model.state_dict(), save_path)
print("epoch", epoch, ", train loss:", l_sum / n, ", validation loss:", val_loss)
best_model = STGCN_WAVE(blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str).to(device)
best_model.load_state_dict(torch.load(save_path))
l = evaluate_model(best_model, loss, test_iter)
MAE, MAPE, RMSE = evaluate_metric(best_model, test_iter, scaler)
print("test loss:", l, "\nMAE:", MAE, ", MAPE:", MAPE, ", RMSE:", RMSE)