-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sampling_multi_gpu.py
231 lines (203 loc) · 8.92 KB
/
train_sampling_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl.multiprocessing as mp
import dgl.nn.pytorch as dglnn
import time
import math
import argparse
from torch.nn.parallel import DistributedDataParallel
import tqdm
from model import SAGE
from load_graph import load_reddit, inductive_split, load_ogb
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)
def evaluate(model, g, nfeat, labels, val_nid, device):
"""
Evaluate the model on the validation set specified by ``val_nid``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_nid : A node ID tensor indicating which nodes do we actually compute the accuracy for.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
pred = model.inference(g, nfeat, device, args.batch_size, args.num_workers)
model.train()
return compute_acc(pred[val_nid], labels[val_nid])
def load_subtensor(nfeat, labels, seeds, input_nodes, dev_id):
"""
Extracts features and labels for a subset of nodes.
"""
batch_inputs = nfeat[input_nodes].to(dev_id)
batch_labels = labels[seeds].to(dev_id)
return batch_inputs, batch_labels
#### Entry point
def run(proc_id, n_gpus, args, devices, data):
# Start up distributed training, if enabled.
dev_id = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port='12345')
world_size = n_gpus
th.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=proc_id)
th.cuda.set_device(dev_id)
# Unpack data
n_classes, train_g, val_g, test_g = data
if args.inductive:
train_nfeat = train_g.ndata.pop('features')
val_nfeat = val_g.ndata.pop('features')
test_nfeat = test_g.ndata.pop('features')
train_labels = train_g.ndata.pop('labels')
val_labels = val_g.ndata.pop('labels')
test_labels = test_g.ndata.pop('labels')
else:
train_nfeat = val_nfeat = test_nfeat = g.ndata.pop('features')
train_labels = val_labels = test_labels = g.ndata.pop('labels')
if not args.data_cpu:
train_nfeat = train_nfeat.to(dev_id)
train_labels = train_labels.to(dev_id)
in_feats = train_nfeat.shape[1]
train_mask = train_g.ndata['train_mask']
val_mask = val_g.ndata['val_mask']
test_mask = ~(test_g.ndata['train_mask'] | test_g.ndata['val_mask'])
train_nid = train_mask.nonzero().squeeze()
val_nid = val_mask.nonzero().squeeze()
test_nid = test_mask.nonzero().squeeze()
# Create PyTorch DataLoader for constructing blocks
sampler = dgl.dataloading.MultiLayerNeighborSampler(
[int(fanout) for fanout in args.fan_out.split(',')])
dataloader = dgl.dataloading.NodeDataLoader(
train_g,
train_nid,
sampler,
use_ddp=n_gpus > 1,
device=dev_id if args.num_workers == 0 else None,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
num_workers=args.num_workers)
# Define model and optimizer
model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
model = model.to(dev_id)
if n_gpus > 1:
model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
loss_fcn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Training loop
avg = 0
iter_tput = []
for epoch in range(args.num_epochs):
if n_gpus > 1:
dataloader.set_epoch(epoch)
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
if proc_id == 0:
tic_step = time.time()
# Load the input features as well as output labels
batch_inputs, batch_labels = load_subtensor(train_nfeat, train_labels,
seeds, input_nodes, dev_id)
blocks = [block.int().to(dev_id) for block in blocks]
# Compute loss and prediction
batch_pred = model(blocks, batch_inputs)
loss = loss_fcn(batch_pred, batch_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if proc_id == 0:
iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
if step % args.log_every == 0 and proc_id == 0:
acc = compute_acc(batch_pred, batch_labels)
print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MB'.format(
epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), th.cuda.max_memory_allocated() / 1000000))
if n_gpus > 1:
th.distributed.barrier()
toc = time.time()
if proc_id == 0:
print('Epoch Time(s): {:.4f}'.format(toc - tic))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0 and epoch != 0:
if n_gpus == 1:
eval_acc = evaluate(
model, val_g, val_nfeat, val_labels, val_nid, devices[0])
test_acc = evaluate(
model, test_g, test_nfeat, test_labels, test_nid, devices[0])
else:
eval_acc = evaluate(
model.module, val_g, val_nfeat, val_labels, val_nid, devices[0])
test_acc = evaluate(
model.module, test_g, test_nfeat, test_labels, test_nid, devices[0])
print('Eval Acc {:.4f}'.format(eval_acc))
print('Test Acc: {:.4f}'.format(test_acc))
if n_gpus > 1:
th.distributed.barrier()
if proc_id == 0:
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=str, default='0',
help="Comma separated list of GPU device IDs.")
argparser.add_argument('--dataset', type=str, default='reddit')
argparser.add_argument('--num-epochs', type=int, default=20)
argparser.add_argument('--num-hidden', type=int, default=16)
argparser.add_argument('--num-layers', type=int, default=2)
argparser.add_argument('--fan-out', type=str, default='10,25')
argparser.add_argument('--batch-size', type=int, default=1000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=5)
argparser.add_argument('--lr', type=float, default=0.003)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--num-workers', type=int, default=0,
help="Number of sampling processes. Use 0 for no extra process.")
argparser.add_argument('--inductive', action='store_true',
help="Inductive learning setting")
argparser.add_argument('--data-cpu', action='store_true',
help="By default the script puts all node features and labels "
"on GPU when using it to save time for data copy. This may "
"be undesired if they cannot fit in GPU memory at once. "
"This flag disables that.")
args = argparser.parse_args()
devices = list(map(int, args.gpu.split(',')))
n_gpus = len(devices)
if args.dataset == 'reddit':
g, n_classes = load_reddit()
elif args.dataset == 'ogbn-products':
g, n_classes = load_ogb('ogbn-products')
else:
raise Exception('unknown dataset')
# Construct graph
g = dgl.as_heterograph(g)
if args.inductive:
train_g, val_g, test_g = inductive_split(g)
else:
train_g = val_g = test_g = g
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
train_g.create_formats_()
val_g.create_formats_()
test_g.create_formats_()
# Pack data
data = n_classes, train_g, val_g, test_g
if n_gpus == 1:
run(0, n_gpus, args, devices, data)
else:
procs = []
for proc_id in range(n_gpus):
p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices, data))
p.start()
procs.append(p)
for p in procs:
p.join()