forked from fanyix/STMN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageDetect.lua
1227 lines (1093 loc) · 43.1 KB
/
ImageDetect.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
------------------------------------------------------------------------------]]
local utils = paths.dofile'utils.lua'
local mu = paths.dofile'myutils.lua'
local ImageDetect = torch.class('fbcoco.ImageDetect')
function ImageDetect:__init(model, transformer, scale, max_size)
assert(model, 'must provide model!')
assert(transformer, 'must provide transformer!')
self.model = model
self.image_transformer = transformer
self.scale = scale or {600}
self.max_size = max_size or 1000
self.sm = nn.SoftMax():cuda()
end
local function getImages(self,images,im)
local num_scales = #self.scale
local imgs = {}
local im_sizes = {}
local im_scales = {}
im = self.image_transformer:forward(im)
local channel = im:size(1)
local im_size = im[1]:size()
local im_size_min = math.min(im_size[1],im_size[2])
local im_size_max = math.max(im_size[1],im_size[2])
for i=1,num_scales do
local im_scale = self.scale[i]/im_size_min
if torch.round(im_scale*im_size_max) > self.max_size then
im_scale = self.max_size/im_size_max
end
local im_s = {im_size[1]*im_scale,im_size[2]*im_scale}
table.insert(imgs,image.scale(im,im_s[2],im_s[1]))
table.insert(im_sizes,im_s)
table.insert(im_scales,im_scale)
end
-- create single tensor with all images, padding with zero for different sizes
im_sizes = torch.IntTensor(im_sizes)
local max_shape = im_sizes:max(1)[1]
images:resize(num_scales,channel,max_shape[1],max_shape[2]):zero()
for i=1,num_scales do
images[i][{{},{1,imgs[i]:size(2)},{1,imgs[i]:size(3)}}]:copy(imgs[i])
end
return im_scales
end
local function project_im_rois(im_rois,scales)
local levels
local rois = torch.FloatTensor()
if #scales > 1 then
assert(false, 'Multiple-scale mode is not properly implemented.')
local scales = torch.FloatTensor(scales)
local widths = im_rois[{{},3}] - im_rois[{{},1}] + 1
local heights = im_rois[{{},4}] - im_rois[{{}, 2}] + 1
local areas = widths * heights
local scaled_areas = areas:view(-1,1) * torch.pow(scales:view(1,-1),2)
local diff_areas = torch.abs(scaled_areas - 224 * 224)
levels = select(2, diff_areas:min(2))
else
levels = torch.FloatTensor()
rois:resize(im_rois:size(1),5)
rois[{{},1}]:fill(1)
rois[{{},{2,5}}]:copy(im_rois):add(-1):mul(scales[1]):add(1)
end
return rois
end
local function recursiveSplit(x, bs, dim)
if type(x) == 'table' then
local res = {}
for k,v in pairs(x) do
local tmp = v:split(bs,dim)
for i=1,#tmp do
if not res[i] then res[i] = {} end
res[i][k] = tmp[i]
end
end
return res
else
return x:split(bs, dim)
end
end
function ImageDetect:memoryEfficientForward(model, input, bs, recompute_features)
local images = input[1]
local rois = input[2]
local recompute_features = recompute_features == nil and true or recompute_features
assert(model.output[1]:numel() > 0)
local rest = nn.Sequential()
for i=2,#model.modules do rest:add(model:get(i)) end
local final = model:get(#model.modules)
-- assuming the net has bbox regression part
self.output = self.output or {torch.CudaTensor(), torch.CudaTensor()}
local num_classes = self.model.output[1]:size(2)
self.output[1]:resize(rois:size(1), num_classes)
self.output[2]:resize(rois:size(1), num_classes * 4)
if recompute_features then
model:get(1):forward{images,rois}
else
model:get(1).output[2] = rois
end
local features = model:get(1).output
assert(features[2]:size(1) == rois:size(1))
local roi_split = features[2]:split(bs,1)
local output1_split = self.output[1]:split(bs,1)
local output2_split = self.output[2]:split(bs,1)
for i,v in ipairs(roi_split) do
local out = rest:forward({features[1], v})
output1_split[i]:copy(out[1])
output2_split[i]:copy(out[2])
end
local function test()
local output_full = model:forward({images,rois})
local output_split = self.output
assert((output_full[1] - output_split[1]):abs():max() == 0)
assert((output_full[2] - output_split[2]):abs():max() == 0)
end
--test()
return self.output
end
function ImageDetect:computeRawOutputs(im, boxes, min_images, recompute_features)
self.model:evaluate()
local inputs = {torch.FloatTensor(),torch.FloatTensor()}
local im_scales = getImages(self,inputs[1],im)
inputs[2] = project_im_rois(boxes,im_scales)
if min_images then
assert(inputs[1]:size(1) == 1)
inputs[1] = inputs[1]:expand(min_images, inputs[1]:size(2), inputs[1]:size(3), inputs[1]:size(4))
end
self.inputs_cuda = self.inputs_cuda or {torch.CudaTensor(),torch.CudaTensor()}
self.inputs_cuda[1]:resize(inputs[1]:size()):copy(inputs[1])
self.inputs_cuda[2]:resize(inputs[2]:size()):copy(inputs[2])
return self.model:forward(self.inputs_cuda)
end
-- supposes boxes is in [x1,y1,x2,y2] format
function ImageDetect:detect(im, boxes, min_images, recompute_features)
self.model:evaluate()
local inputs = {torch.FloatTensor(),torch.FloatTensor()}
local im_scales = getImages(self,inputs[1],im)
inputs[2] = project_im_rois(boxes,im_scales)
if min_images then
assert(inputs[1]:size(1) == 1)
inputs[1] = inputs[1]:expand(min_images, inputs[1]:size(2), inputs[1]:size(3), inputs[1]:size(4))
end
self.inputs_cuda = self.inputs_cuda or {torch.CudaTensor(),torch.CudaTensor()}
self.inputs_cuda[1]:resize(inputs[1]:size()):copy(inputs[1])
self.inputs_cuda[2]:resize(inputs[2]:size()):copy(inputs[2])
local output0 = self:memoryEfficientForward(self.model, self.inputs_cuda, 500, recompute_features)
--local output0 = self.model:forward(self.inputs_cuda)
local class_values, bbox_values
if torch.type(output0) == 'table' then
class_values= output0[1]
bbox_values = output0[2]:float()
for i,v in ipairs(bbox_values:split(4,2)) do
utils.convertFrom(v,boxes,v)
end
else
class_values = output0
end
if not self.model.noSoftMax then
class_values = self.sm:forward(class_values)
end
return class_values:float(), bbox_values
end
---------------------------------------------
function ImageDetect:detect_VID_LONGMEM(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
assert(det_T%2==1, 'det_T must be odd number.')
-- Assume we can hold all conv map in memory
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / det_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im):clone()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
-- set STMM N and T
local default_N, default_T = utils.set_NT(self.model.STMM_stack, 1, det_T)
-- forward, do left->right and right->left individually
local B = math.ceil(T / det_T)
local start_ptr, inv_start_ptr = 1, T
local STMMs = self.model.STMM_stack:findModules('nn.STMM')
assert(#STMMs == 2, 'You sure have only one layer?')
local left2right = STMMs[1]
local right2left = STMMs[2]
local left2right_mem, right2left_mem, left2right_coll, right2left_coll = nil, nil, {}, {}
for bidx = 1, B do
collectgarbage()
-- left -> right
local end_ptr = math.min(start_ptr + det_T - 1, T)
local len = end_ptr - start_ptr + 1
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
utils.set_NT(left2right, 1, len)
local left2right_output
if left2right_mem then
left2right_output = left2right:forward({cur_conv_maps, left2right_mem}):clone()
else
left2right_output = left2right:forward(cur_conv_maps):clone()
end
left2right_mem = left2right_output[{{len}, {}, {}, {}}]
table.insert(left2right_coll, left2right_output)
-- right -> left
local inv_end_ptr = math.max(inv_start_ptr - det_T + 1, 1)
local inv_len = inv_start_ptr - inv_end_ptr + 1
local inv_seq = torch.range(inv_start_ptr, inv_end_ptr, -1):long()
local cur_inv_conv_maps = conv_maps:index(1, inv_seq)
utils.set_NT(right2left, 1, inv_len)
local right2left_output
if right2left_mem then
right2left_output = right2left:forward({cur_inv_conv_maps, right2left_mem}):clone()
else
right2left_output = right2left:forward(cur_inv_conv_maps):clone()
end
right2left_mem = right2left_output[{{inv_len}, {}, {}, {}}]
table.insert(right2left_coll, right2left_output)
-- track counter
start_ptr = end_ptr + 1
inv_start_ptr = inv_end_ptr - 1
end
left2right_coll = torch.cat(left2right_coll, 1)
right2left_coll = torch.cat(right2left_coll, 1)
-- revert back right2left_coll
right2left_coll = right2left_coll:index(1, torch.range(T,1,-1):long())
-- merge
local stmm_maps = torch.cat({left2right_coll, right2left_coll}, 2)
-- clear model state and collectgarbage
conv_maps = nil
collectgarbage()
-- set back N and T
utils.set_NT(self.model.STMM_stack, default_N, default_T)
start_ptr = 1
for bidx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_stmm_maps = stmm_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
local score, bbox = self:conv2pred(cur_stmm_maps, cur_boxes, self.model.post_stack)
collectgarbage()
for tmpidx = 1, #cur_boxes do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
start_ptr = end_ptr + 1
end
return score_coll, bbox_coll
end
---------------------------------------------
function ImageDetect:detect_VID_MULWINSIZE(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
if T <= det_T then
score_coll, bbox_coll = self:detect_VID(im, boxes, min_images, recompute_features)
else
-- NOTE A set of window size
local det_T_seq = {det_T, det_T-4, det_T-8}
-- Assume we can hold all conv map in memory
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / det_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im):clone()
--output = output:float()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
-- Fetch network
self.top = self.top or nn.Sequential()
:add(nn.ParallelTable()
:add(self.model.STMM_stack)
:add(nn.Identity()))
:add(self.model.post_stack)
local default_N, default_T = utils.set_NT(self.top, 1, 1)
-- Compute multiple window size
for tIdx, t in ipairs(det_T_seq) do
collectgarbage()
-- Init container
score_coll[tIdx] = {}
bbox_coll[tIdx] = {}
assert(t%2==1, 'det_T must be odd number.')
local center_idx = (t - 1) / 2 + 1
-- Set NT
utils.set_NT(self.top, 1, t)
-- Compute STMM output
for start_ptr = 1, T - t + 1 do
local end_ptr = math.min(start_ptr + t - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
local score, bbox = self:conv2pred(cur_conv_maps, cur_boxes, self.top)
collectgarbage()
if start_ptr == 1 then
for tmpidx = 1, center_idx do
local glbidx = tmpidx + start_ptr - 1
score_coll[tIdx][glbidx] = score[tmpidx]
bbox_coll[tIdx][glbidx] = bbox[tmpidx]
end
elseif start_ptr == T-t+1 then
for tmpidx = center_idx, t do
local glbidx = tmpidx + start_ptr - 1
score_coll[tIdx][glbidx] = score[tmpidx]
bbox_coll[tIdx][glbidx] = bbox[tmpidx]
end
else
local glbidx = center_idx + start_ptr - 1
score_coll[tIdx][glbidx] = score[center_idx]
bbox_coll[tIdx][glbidx] = bbox[center_idx]
end
end
end
-- Merge different win size
local score_coll_flat, bbox_coll_flat = {}, {}
for frame_idx = 1, T do
local score_tmp, bbox_tmp = {}, {}
for tIdx = 1, #det_T_seq do
score_tmp[tIdx] = score_coll[tIdx][frame_idx]
bbox_tmp[tIdx] = bbox_coll[tIdx][frame_idx]
end
score_coll_flat[frame_idx] = torch.cat(score_tmp, 1)
bbox_coll_flat[frame_idx] = torch.cat(bbox_tmp, 1)
end
score_coll = score_coll_flat
bbox_coll = bbox_coll_flat
-- Set NT
utils.set_NT(self.top, default_N, default_T)
end
return score_coll, bbox_coll
end
function ImageDetect:detect_VID_LAST(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
assert(det_T%2==1, 'det_T must be odd number.')
if T <= det_T then
score_coll, bbox_coll = self:detect_VID(im, boxes, min_images, recompute_features)
else
-- Assume we can hold all conv map in memory
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / det_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im):clone()
--output = output:float()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
-- Compute STMM output
self.top = self.top or nn.Sequential()
:add(nn.ParallelTable()
:add(self.model.STMM_stack)
:add(nn.Identity()))
:add(self.model.post_stack)
for start_ptr = 1, T - det_T + 1 do
-- clear state of the model
--self.top:clearState()
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
local score, bbox = self:conv2pred(cur_conv_maps, cur_boxes, self.top)
collectgarbage()
if start_ptr == 1 then
for tmpidx = 1, det_T do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
else
local glbidx = det_T + start_ptr - 1
score_coll[glbidx] = score[det_T]
bbox_coll[glbidx] = bbox[det_T]
end
end
end
return score_coll, bbox_coll
end
---------------------------------------------
function ImageDetect:detect_VID_NO_OVERLAP(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
self.model:clearState()
local CONV_FORWARD_T = 4
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / CONV_FORWARD_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + CONV_FORWARD_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im)
output = output:float()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
if T > det_T then
local B = math.ceil(T / det_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
cur_conv_maps = cur_conv_maps:cuda()
local only_center = false
local score, bbox = self:conv2pred(cur_conv_maps, cur_boxes,
self.model.STMM_stack, self.model.post_stack, only_center)
collectgarbage()
for tmpidx = 1, T do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
start_ptr = end_ptr + 1
end
else
conv_maps = conv_maps:cuda()
local score, bbox = self:conv2pred(conv_maps, boxes,
self.model.STMM_stack, self.model.post_stack, false)
collectgarbage()
for tmpidx = 1, T do
score_coll[tmpidx] = score[tmpidx]
bbox_coll[tmpidx] = bbox[tmpidx]
end
end
return score_coll, bbox_coll
end
function ImageDetect:detect_VID_CENTER(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
assert(det_T%2==1, 'det_T must be odd number.')
local center_idx = (det_T - 1) / 2 + 1
self.model:clearState()
if false then
--if T <= det_T then
score_coll, bbox_coll = self:detect_VID(
im, boxes, min_images, recompute_features)
else
local CONV_FORWARD_T = 1
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / CONV_FORWARD_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + CONV_FORWARD_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im)
output = output:float()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
--print('Start compute detection.')
if T > det_T then
for start_ptr = 1, T - det_T + 1 do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
cur_conv_maps = cur_conv_maps:cuda()
local only_center = true
if start_ptr == 1 or start_ptr == T - det_T + 1 then
only_center = false
end
local score, bbox = self:conv2pred(cur_conv_maps, cur_boxes,
self.model.STMM_stack, self.model.post_stack, only_center)
collectgarbage()
if start_ptr == 1 then
for tmpidx = 1, center_idx do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
elseif start_ptr == T-det_T+1 then
for tmpidx = center_idx, det_T do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
else
local glbidx = center_idx + start_ptr - 1
score_coll[glbidx] = score[center_idx]
bbox_coll[glbidx] = bbox[center_idx]
end
end
else
conv_maps = conv_maps:cuda()
local score, bbox = self:conv2pred(conv_maps, boxes,
self.model.STMM_stack, self.model.post_stack, false)
collectgarbage()
for tmpidx = 1, T do
score_coll[tmpidx] = score[tmpidx]
bbox_coll[tmpidx] = bbox[tmpidx]
end
end
--print('Done compute detection.')
end
return score_coll, bbox_coll
end
function ImageDetect:detect_VID_CENTER_OVERLAP(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
assert(det_T%2==1, 'det_T must be odd number.')
local center_idx = (det_T - 1) / 2 + 1
self.model:clearState()
local CONV_FORWARD_T = 1
local conv_stack = self.model.conv_stack
local conv_maps = {}
local B = math.ceil(T / CONV_FORWARD_T)
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + CONV_FORWARD_T - 1, T)
local batch_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im)
output = output:float()
table.insert(conv_maps, output)
start_ptr = end_ptr + 1
end
conv_maps = torch.cat(conv_maps, 1)
if T > det_T then
for start_ptr = 1, T - det_T + 1 do
-- clear state of the model
--self.top:clearState()
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = conv_maps[{{start_ptr, end_ptr}, {}, {}, {}}]
cur_conv_maps = cur_conv_maps:cuda()
local only_center = false
-- conv2pred_iter_replace or conv2pred_iter
local score, bbox = self:conv2pred_iter(cur_conv_maps, cur_boxes,
self.model.STMM_stack, self.model.post_stack, only_center)
collectgarbage()
for tmpidx = 1, #score do
local glbidx = tmpidx + start_ptr - 1
if score_coll[glbidx] and score_coll[glbidx]:nElement() > 0 then
score_coll[glbidx] = torch.cat({score[tmpidx], score_coll[glbidx]}, 1)
else
score_coll[glbidx] = score[tmpidx]
end
if bbox_coll[glbidx] and bbox_coll[glbidx]:nElement() > 0 then
bbox_coll[glbidx] = torch.cat({bbox[tmpidx], bbox_coll[glbidx]}, 1)
else
bbox_coll[glbidx] = bbox[tmpidx]
end
end
end
else
local cur_conv_maps = conv_maps:cuda()
-- conv2pred_iter_replace or conv2pred_iter
local score, bbox = self:conv2pred_iter(cur_conv_maps, boxes,
self.model.STMM_stack, self.model.post_stack, false)
collectgarbage()
for tmpidx = 1, T do
score_coll[tmpidx] = score[tmpidx]
bbox_coll[tmpidx] = bbox[tmpidx]
end
end
--print('Done compute detection.')
return score_coll, bbox_coll, conv_maps
end
function ImageDetect:detect_VID_CENTER_OVERLAP_MULTISCALE(im, boxes, det_T, min_images, recompute_features)
self.model:evaluate()
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
assert(T == #boxes, '#im does not equate to #boxes.')
assert(det_T%2==1, 'det_T must be odd number.')
local center_idx = (det_T - 1) / 2 + 1
self.model:clearState()
if false then
--if T <= det_T then
score_coll, bbox_coll = self:detect_VID(
im, boxes, min_images, recompute_features)
else
local scales = {270, 360, 540}
local ratios = {}
local hgt, wid = im:size(3), im:size(4)
local conv_maps = {}
local CONV_FORWARD_T = 3
local conv_stack = self.model.conv_stack
local B = math.ceil(T / CONV_FORWARD_T)
for scale_idx, scale in ipairs(scales) do
local cur_conv_maps = {}
local im_size_min = math.min(hgt, wid)
local im_size_max = math.max(hgt, wid)
ratios[scale_idx] = scale / im_size_min
local cur_hgt, cur_wid = hgt*ratios[scale_idx], wid*ratios[scale_idx]
local cur_im = torch.FloatTensor(im:size(1), 3, cur_hgt, cur_wid)
for idx = 1, im:size(1) do
cur_im[idx]:copy(image.scale(im[idx], cur_wid, cur_hgt))
end
local start_ptr = 1
for bIdx = 1, B do
local end_ptr = math.min(start_ptr + CONV_FORWARD_T - 1, T)
local batch_im = cur_im[{{start_ptr, end_ptr}, {}, {}, {}}]
for tmpidx = 1, batch_im:size(1) do
local tmp_im = batch_im[{tmpidx, {}, {}, {}}]
tmp_im:copy(self.image_transformer:forward(tmp_im))
end
batch_im = batch_im:cuda()
local output = conv_stack:forward(batch_im)
output = output:float()
table.insert(cur_conv_maps, output)
start_ptr = end_ptr + 1
end
cur_conv_maps = torch.cat(cur_conv_maps, 1)
conv_maps[scale_idx] = cur_conv_maps
end
if T > det_T then
for start_ptr = 1, T - det_T + 1 do
-- clear state of the model
--self.top:clearState()
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local cur_conv_maps = {}
for idx = 1, #conv_maps do
cur_conv_maps[idx] = conv_maps[idx][{{start_ptr, end_ptr}, {}, {}, {}}]:cuda()
end
local only_center = false
local score, bbox = self:conv2pred_mulscale(cur_conv_maps, cur_boxes, ratios,
self.model.STMM_stack, self.model.post_stack, only_center)
collectgarbage()
for tmpidx = 1, #score do
local glbidx = tmpidx + start_ptr - 1
if score_coll[glbidx] and score_coll[glbidx]:nElement() > 0 then
score_coll[glbidx] = torch.cat({score[tmpidx], score_coll[glbidx]}, 1)
else
score_coll[glbidx] = score[tmpidx]
end
if bbox_coll[glbidx] and bbox_coll[glbidx]:nElement() > 0 then
bbox_coll[glbidx] = torch.cat({bbox[tmpidx], bbox_coll[glbidx]}, 1)
else
bbox_coll[glbidx] = bbox[tmpidx]
end
end
end
else
for idx = 1, #conv_maps do
conv_maps[idx] = conv_maps[idx]:cuda()
end
local score, bbox = self:conv2pred_mulscale(conv_maps, boxes, ratios,
self.model.STMM_stack, self.model.post_stack, false)
collectgarbage()
for tmpidx = 1, T do
score_coll[tmpidx] = score[tmpidx]
bbox_coll[tmpidx] = bbox[tmpidx]
end
end
--print('Done compute detection.')
end
return score_coll, bbox_coll
end
function ImageDetect:detect_VID_SEQ(im, boxes, det_T, min_images, recompute_features)
det_T = 1
local score_coll = {}
local bbox_coll = {}
local T = im:size(1)
-- assert(T % det_T == 0, 'Number of images must be multiple of detector capacity.')
local B = math.ceil(T / det_T)
local start_ptr = 1
for bidx = 1, B do
local end_ptr = math.min(start_ptr + det_T - 1, T)
local cur_im = im[{{start_ptr, end_ptr}, {}, {}, {}}]
local cur_boxes = {table.unpack(boxes, start_ptr, end_ptr)}
local score, bbox = self:detect_VID(cur_im, cur_boxes, min_images, recompute_features)
for tmpidx = 1, #score do
local glbidx = tmpidx + start_ptr - 1
score_coll[glbidx] = score[tmpidx]
bbox_coll[glbidx] = bbox[tmpidx]
end
start_ptr = end_ptr + 1
end
return score_coll, bbox_coll
end
-- supposes boxes is in [x1,y1,x2,y2] format
function ImageDetect:detect_VID(im, boxes, min_images, recompute_features)
assert(#self.model:findModules('nn.BBoxNorm') > 0, 'WARNING: No nn.BBoxNorm is not found in the model.')
assert(#self.scale==1, 'Current implementation only supports testing with single scale.')
self.model:evaluate()
local H, W = im:size(3), im:size(4)
local im_coll, box_coll = {}, {}
local box_count, im_box_start = 0, {}
for img_idx = 1, im:size(1) do
local cur_inputs = {torch.FloatTensor(),torch.FloatTensor()}
local cur_im = im[{img_idx, {}, {}, {}}]
local cur_boxes = boxes[img_idx]
local im_scales = getImages(self,cur_inputs[1],cur_im)
cur_inputs[2] = project_im_rois(cur_boxes,im_scales)
cur_inputs[2][{{}, 1}]:fill(img_idx)
table.insert(im_coll, cur_inputs[1])
table.insert(box_coll, cur_inputs[2])
im_box_start[img_idx] = box_count + 1
local cur_box_count = cur_inputs[2]:size(1)
box_count = box_count + cur_box_count
end
table.insert(im_box_start, box_count + 1)
im_coll = torch.cat(im_coll, 1)
box_coll = torch.cat(box_coll, 1)
local inputs = {}
inputs[1] = im_coll
inputs[2] = box_coll
boxes = torch.cat(boxes, 1)
-- some global vars
local expanded_T = inputs[1]:size(1)
-- expand (pad)
if min_images then
if inputs[1]:size(1) % min_images ~= 0 then
local pad_T = min_images - inputs[1]:size(1) % min_images
inputs[1] = torch.cat({inputs[1], inputs[1].new(pad_T, inputs[1]:size(2),
inputs[1]:size(3), inputs[1]:size(4)):zero()}, 1)
expanded_T = inputs[1]:size(1)
end
end
self.inputs_cuda = self.inputs_cuda or {torch.CudaTensor(),torch.CudaTensor()}
self.inputs_cuda[1]:resize(inputs[1]:size()):copy(inputs[1])
self.inputs_cuda[2]:resize(inputs[2]:size()):copy(inputs[2])
-- set STMM N and T
local default_N, default_T = utils.set_NT(self.model, 1, expanded_T)
-- forward
local output0 = self.model:forward(self.inputs_cuda)
-- set back N and T
utils.set_NT(self.model, default_N, default_T)
local class_values, bbox_values
if torch.type(output0) == 'table' then
class_values= output0[1]
bbox_values = output0[2]:float()
for i,v in ipairs(bbox_values:split(4,2)) do
utils.convertFrom(v,boxes,v)
end
else
class_values = output0
end
if not self.model.noSoftMax then
class_values = self.sm:forward(class_values)
end
class_values = class_values:float()
-- pack for different image
local class_values_coll, bbox_values_coll = {}, {}
for img_idx = 1, im:size(1) do
local start_idx = im_box_start[img_idx]
local end_idx = im_box_start[img_idx+1]-1 or class_values:size(1)
class_values_coll[img_idx] = class_values[{{start_idx, end_idx}, {}}]
bbox_values_coll[img_idx] = bbox_values[{{start_idx, end_idx}, {}}]
end
return class_values_coll, bbox_values_coll
end
function ImageDetect:conv2pred_mulscale(conv_maps, boxes, ratios, STMM_model, post_model, only_center)
assert(#post_model:findModules('nn.BBoxNorm') > 0, 'WARNING: No nn.BBoxNorm is not found in the post stack.')
local ITER_NUM = 2
local ITER_SCORE_THRESH = 0.05
local T = conv_maps[1]:size(1)
local center_idx = (T + 1) / 2
assert(T == #boxes, 'Number of image should be equal to number of boxes.')
local STMM_maps = {}
-- set STMM N and T
local default_N, default_T = utils.set_NT(STMM_model, 1, T)
for idx = 1, #conv_maps do
STMM_maps[idx] = STMM_model:forward(conv_maps[idx]):clone()
end
-- set back N and T
utils.set_NT(self.model, default_N, default_T)
-- get the roi pooling module
local ROI_GRID = 14
self.roi_pool = self.roi_pool or inn.ROIPooling(ROI_GRID,ROI_GRID,1/16):cuda()
local class_values_coll, bbox_values_coll = {}, {}
for img_idx = 1, T do
if not only_center or img_idx == center_idx then
local cur_boxes = torch.FloatTensor(boxes[img_idx]:size(1), 5)
cur_boxes:narrow(2, 2, 4):copy(boxes[img_idx])
cur_boxes:select(2, 1):fill(1)
local score_coll, box_coll = {}, {}
for iter = 1, ITER_NUM do
if cur_boxes and cur_boxes:nElement() > 0 then
-- max-out
local roi_feat
local roi_num, feat_dim = cur_boxes:size(1), STMM_maps[1]:size(2)
for idx = 1, #STMM_maps do
local cur_scale_box = cur_boxes:clone()
cur_scale_box:narrow(2, 2, 4):mul(ratios[idx])
local cur_STMM_maps = STMM_maps[idx][{{img_idx},{},{},{}}]
local tmp = self.roi_pool:forward({cur_STMM_maps, cur_scale_box:cuda()})
tmp = tmp:view(1, roi_num, feat_dim, ROI_GRID, ROI_GRID)
if idx == 1 then
roi_feat = tmp:clone()
else
roi_feat:copy(torch.max(torch.cat({tmp, roi_feat}, 1), 1))
end
collectgarbage()
end
roi_feat = roi_feat:view(roi_num, feat_dim, ROI_GRID, ROI_GRID)
local output = post_model:forward(roi_feat)
local score, box_coef = output[1]:float(), output[2]:float()
for i,v in ipairs(box_coef:split(4,2)) do
utils.convertFrom(v,cur_boxes:narrow(2, 2, 4),v)
end
if not self.model.noSoftMax then
if self.sm:type() ~= 'torch.FloatTensor' then
self.sm = self.sm:float()
end
score:copy(self.sm:forward(score))
end
local box_coef_flat = box_coef:view(box_coef:size(1), -1, 4)
box_coef_flat = box_coef_flat:narrow(2, 2, box_coef_flat:size(2) - 1):contiguous():view(-1, 4)
local score_flat = score:narrow(2, 2, score:size(2) - 1):contiguous():view(-1)
local idx = score_flat:view(-1):ge(ITER_SCORE_THRESH):nonzero()
if idx:nElement() > 0 then
idx = idx:view(-1)
cur_boxes:resize(idx:nElement(), 5)
cur_boxes:narrow(2, 2, 4):copy(box_coef_flat:index(1, idx))
cur_boxes:select(2, 1):fill(1)
else
cur_boxes = torch.FloatTensor()
end
table.insert(score_coll, score)
table.insert(box_coll, box_coef)
end
end
if #score_coll > 0 and score_coll[1]:nElement() > 0 then
score_coll = torch.cat(score_coll, 1)
box_coll = torch.cat(box_coll, 1)
end
class_values_coll[img_idx] = score_coll
bbox_values_coll[img_idx] = box_coll
end
end
return class_values_coll, bbox_values_coll
end
function ImageDetect:conv2pred_iter(conv_maps, boxes, STMM_model, post_model, only_center)
assert(#post_model:findModules('nn.BBoxNorm') > 0, 'WARNING: No nn.BBoxNorm is not found in the post stack.')
local ITER_NUM = 2
local ITER_SCORE_THRESH = 0.05