forked from fanyix/STMN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatchProviderVID.lua
905 lines (806 loc) · 33.1 KB
/
BatchProviderVID.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
local myutils = require 'myutils'
local utils = require 'utils'
local image = require 'image'
local BatchProviderVID = torch.class('fbcoco.BatchProviderVID')
-- DEBUG flag
local DEBUG = false
function BatchProviderVID:__init(anno, transformer, opt)
assert(transformer,'must provide transformer!')
self.anno = anno
self.prop_dir = opt.prop_dir
self.fg_threshold = opt.fg_threshold
self.bg_threshold = opt.bg_threshold
self.fg_fraction = opt.fg_fraction
self.batch_size = opt.batch_size
self.test_batch_size = opt.test_batch_size
self.sample_n_per_box = opt.sample_n_per_box
self.sample_sigma = opt.sample_sigma
self.batch_N = opt.seq_per_batch or 2
self.batch_T = opt.timestep_per_batch or 16
self.frame_stride = opt.frame_stride
self.spec_im_size = opt.spec_im_size
self.scale = opt.scale or 600
self.max_size = opt.max_size or 1000
self.image_transformer = transformer
self.img_dir = opt.img_dir
-- how many threads for Parallel feeding
self.parallel_roi_batch = opt.parallel_roi_batch or 1
-- whether to focus on the center or not
self.seq_center = opt.seq_center or false
-- uniformly jitter the scale by this frac
self.scale_jitter = opt.scale_jitter or 0 -- default to 0
-- uniformly jitter the scale by this frac
self.aspect_jitter = opt.aspect_jitter or 0 -- default to 0
-- likelihood of doing a random crop (in each dimension, independently)
self.crop_likelihood = crop_likelihood or 0
-- number of attempts to try to find a valid crop
self.crop_attempts = 10
-- a crop must preserve at least this fraction of the iamge
self.crop_min_frac = 0.7
-- get a deterministic list of video names
self.video_names = myutils.keys(anno)
self.non_redundant_sampling = opt.sampling_mode == 'NONE_REDUNDANT' -- 'RANDOM' or 'NONE_REDUNDANT'
-- init the video reading list
self:shuffle()
if self.non_redundant_sampling then
self:init_sampling_hist()
end
-- augment the category name list
local category_list
if opt.dataset == 'ImageNetVID' then
category_list = {'airplane', 'antelope', 'bear', 'bicycle', 'bird', 'bus', 'car', 'cattle',
'dog', 'domestic_cat', 'elephant', 'fox', 'giant_panda', 'hamster', 'horse', 'lion',
'lizard', 'monkey', 'motorcycle', 'rabbit', 'red_panda', 'sheep', 'snake', 'squirrel',
'tiger', 'train', 'turtle', 'watercraft', 'whale', 'zebra'
}
else
assert(false, 'Unknown dataset.')
end
self.cat_name_to_id = {}
self.cat_id_to_name = {}
self.class_num = #category_list
for cat_id, cat_name in ipairs(category_list) do
self.cat_name_to_id[cat_name] = cat_id + 1 -- +1 because we leave 1 to background class
self.cat_id_to_name[cat_id + 1] = cat_name
end
-- initialize a transformer
if opt.brightness_var and opt.contrast_var and opt.saturation_var and opt.lighting_var then
self.color_jitter = fbcoco.ColorTransformer(opt.brightness_var,
opt.contrast_var, opt.saturation_var, opt.lighting_var)
else
self.color_jitter = nil
end
-- init a counter array recording the encounter of objects of different categories
self.cat_counter = torch.FloatTensor(self.class_num + 1):zero()
end
function BatchProviderVID:load_prop(video_name)
local filename = paths.concat(self.prop_dir, string.format('%s.t7', video_name))
local res = torch.load(filename)
return res
end
function BatchProviderVID:init_sampling_hist()
self.sampling_hist = {}
for vid_name, vid in pairs(self.anno) do
self.sampling_hist[vid_name] = torch.IntTensor(#vid.im_list):zero()
end
end
function BatchProviderVID:get_next_video_idx()
self.video_ptr = self.video_ptr + 1
if self.video_ptr > self.video_index_list:nElement() then
self:shuffle()
end
local video_idx = self.video_index_list[self.video_ptr]
return video_idx
end
function BatchProviderVID:shuffle()
self.video_index_list = torch.randperm(#self.video_names):long()
self.video_ptr = 1
end
function BatchProviderVID:getFlows(video_name, frame_seq, flip, transform, spec_im_size)
-- sample some jittering parameters
flip = flip == 1
-- transform flag
if transform == nil then
transform = true
else
transform = transform == 1
end
local num_images = frame_seq:nElement()
local im_s, im_scale
-- load images from disk
local flows
for ii, frame_idx in ipairs(frame_seq:totable()) do
local concise_video_name = paths.basename(video_name)
local ptr = frame_idx
local u_filename = paths.concat(self.img_dir, 'u', concise_video_name, string.format('frame%.6d.jpg', ptr))
while not myutils.file_exists(u_filename) do
--assert(frame_idx - ptr <= 3, 'Fallback too much.')
if frame_idx - ptr > 3 then
print(string.format('WARNING: file -- %s, |target_idx - actual_idx| = %d', u_filename, frame_idx - ptr))
end
ptr = ptr - 1
u_filename = paths.concat(self.img_dir, 'u', concise_video_name, string.format('frame%.6d.jpg', ptr))
end
local u = image.load(u_filename, 1, 'float')
local ptr = frame_idx
local v_filename = paths.concat(self.img_dir, 'v', concise_video_name, string.format('frame%.6d.jpg', ptr))
while not myutils.file_exists(v_filename) do
--assert(frame_idx - ptr <= 3, 'Fallback too much.')
if frame_idx - ptr > 3 then
print(string.format('WARNING: file -- %s, |target_idx - actual_idx| = %d', v_filename, frame_idx - ptr))
end
ptr = ptr - 1
v_filename = paths.concat(self.img_dir, 'v', concise_video_name, string.format('frame%.6d.jpg', ptr))
end
local v = image.load(v_filename, 1, 'float')
if ii == 1 then
if spec_im_size ~= nil then
im_s = spec_im_size
else
local im_size = u[1]:size()
local im_size_min = math.min(im_size[1],im_size[2])
local im_size_max = math.max(im_size[1],im_size[2])
im_scale = self.scale/im_size_min
im_scale = {im_scale, im_scale}
im_s = {math.ceil(im_size[1]*im_scale[1]), math.ceil(im_size[2]*im_scale[1])}
for dim = 1,2 do
if im_s[dim] > self.max_size then
local rat = im_s[dim] / self.max_size
im_s = {math.ceil(im_s[1] / rat), math.ceil(im_s[2] / rat)}
im_scale = {im_scale[1] / rat, im_scale[2] / rat}
end
end
end
im_s = {math.floor(im_s[1]), math.floor(im_s[2])}
flows = torch.FloatTensor(num_images, 2, im_s[1], im_s[2]):zero()
end
if flip then
u = image.hflip(u)
u = 1 - u
v = image.hflip(v)
end
local flow = torch.cat({u, v}, 1)
flow = self:scale_flow(flow, im_s[1], im_s[2])
if transform then
flow = self.image_transformer:forward(flow)
end
flows[ii]:copy(flow)
end
im_s = torch.FloatTensor(im_s)
return flows, im_s
end
function BatchProviderVID:scale_flow(flow, hgt, wid)
-- flow: [2, H, W], first x (horizontal) then y
local H, W = flow:size(2), flow:size(3)
local u = image.scale(flow[1], wid, hgt)
local v = image.scale(flow[2], wid, hgt)
--u:mul(wid/W)
--v:mul(hgt/H)
local scaled_flow = torch.cat({u:view(1, hgt, wid), v:view(1, hgt, wid)}, 1)
return scaled_flow
end
function BatchProviderVID:getImages(video_name, frame_seq, flip, transform, spec_im_size)
-- Load one video chunk
local imgs = {}
-- transform flag
if transform == nil then
transform = true
else
transform = transform == 1
end
-- sample some jittering parameters
local num_images = frame_seq:nElement()
local aspect_jitter = 1 + (torch.uniform(-1.0,1.0))*self.aspect_jitter
local scale_jitter = 1 + (torch.uniform(-1.0,0.0))*self.scale_jitter
--local aspect_jitter = 1 + (torch.uniform(-1.5,0.5))*self.aspect_jitter
--local scale_jitter = 1 + (torch.uniform(-1.5,0.5))*self.scale_jitter
flip = flip == 1
local im_s, im_scale, expand_shape
if self.color_jitter then
self.color_jitter:SampleColorParams()
end
-- load images from disk
local im_set = {}
for ii, frame_idx in ipairs(frame_seq:totable()) do
local img_filename = self.anno[video_name].im_list[frame_idx]
img_filename = paths.concat(self.img_dir, video_name, img_filename)
local im = image.load(img_filename, 3, 'double')
im_set[ii] = im
end
for ii, frame_idx in ipairs(frame_seq:totable()) do
local im = im_set[ii]
-- perform photometric transformation
if self.color_jitter then
im = self.color_jitter:forward(im)
end
if transform then
im = self.image_transformer:forward(im)
end
if flip then im = image.hflip(im) end
if ii == 1 then
if spec_im_size ~= nil then
im_s = spec_im_size
else
local im_size = im[1]:size()
local im_size_min = math.min(im_size[1],im_size[2])
local im_size_max = math.max(im_size[1],im_size[2])
im_scale = self.scale/im_size_min
im_scale = im_scale * scale_jitter
im_scale = {im_scale * math.sqrt(aspect_jitter), im_scale / math.sqrt(aspect_jitter)}
im_s = {math.ceil(im_size[1]*im_scale[1]), math.ceil(im_size[2]*im_scale[2])}
for dim = 1,2 do
if im_s[dim] > self.max_size then
local rat = im_s[dim] / self.max_size
im_s = {math.ceil(im_s[1] / rat), math.ceil(im_s[2] / rat)}
im_scale = {im_scale[1] / rat, im_scale[2] / rat}
end
end
end
im_s = {math.floor(im_s[1]), math.floor(im_s[2])}
expand_shape = torch.LongStorage({1, 3, im_s[1], im_s[2]})
end
table.insert(imgs, image.scale(im,im_s[2],im_s[1]):view(expand_shape))
end
imgs = torch.cat(imgs, 1)
im_s = torch.FloatTensor(im_s)
return imgs, im_s
end
function BatchProviderVID:sampleAroundGTBoxes(boxes, n_per_box, sigma)
local samples = torch.repeatTensor(boxes, n_per_box, 1)
return samples:add(torch.FloatTensor(#samples):normal(0,sigma))
end
function BatchProviderVID:organize_boxes(gtboxes, rois, gtlabels, obj_n)
if self.sample_n_per_box > 0 and gtboxes:numel() > 0 then
local sampled = self:sampleAroundGTBoxes(gtboxes:narrow(2, 1, 4), self.sample_n_per_box, self.sample_sigma)
rois = rois:cat(sampled, 1)
end
-- compute IOU
local overlap = torch.FloatTensor(gtboxes:size(1), rois:size(1))
for ii = 1, gtboxes:size(1) do
local gtbox = gtboxes[ii]
local o = utils.boxoverlap_01(rois, gtbox)
overlap[ii] = o
end
local max_overlap, max_idx = torch.max(overlap, 1)
max_overlap = max_overlap:view(-1)
max_idx = max_idx:view(-1)
local labels = gtlabels:index(1, max_idx)
-- pick the foreground and background boxes
local fg = max_overlap:ge(self.fg_threshold):nonzero()
local fg_boxes, fg_labels, fg_max_idx = nil, nil, nil
if fg:nElement() > 0 then
fg = fg:view(-1)
local fg_num = fg:nElement()
fg = fg:index(1, torch.randperm(fg_num)[{{1, math.min(fg_num, self.fg_num_each)}}]:long())
fg_boxes = rois:index(1, fg)
fg_labels = labels:index(1, fg)
fg_max_idx = max_idx:index(1, fg)
end
local bg = max_overlap:ge(self.bg_threshold[1]):cmul(max_overlap:lt(
self.bg_threshold[2])):nonzero()
local bg_boxes, bg_labels, bg_max_idx = nil, nil, nil
if bg:nElement() > 0 then
bg = bg:view(-1)
local bg_num = bg:nElement()
bg = bg:index(1, torch.randperm(bg_num)[{{1, math.min(bg_num, self.bg_num_each)}}]:long())
bg_boxes = rois:index(1, bg)
bg_labels = torch.IntTensor(bg:nElement()):fill(1)
bg_max_idx = max_idx.new(bg:nElement()):zero()
end
local boxes, labels, correspondance = nil, nil, nil
local obj_id = gtboxes[{{}, 5}]:clone()
local obj_box = torch.FloatTensor(obj_n, 4):fill(-1)
for idx = 1, gtboxes:size(1) do
local cur_obj_id = obj_id[idx]
obj_box[{cur_obj_id, {}}]:copy(gtboxes[{idx, {1, 4}}])
end
gtboxes = gtboxes[{{}, {1, 4}}]
if bg:nElement() > 0 and fg:nElement() > 0 then
boxes = torch.cat({fg_boxes, bg_boxes}, 1)
labels = torch.cat({fg_labels, bg_labels}, 1)
correspondance = torch.cat({fg_max_idx, bg_max_idx}, 1)
else
if bg:nElement() > 0 then
boxes = bg_boxes
labels = bg_labels
correspondance = bg_max_idx
elseif fg:nElement() > 0 then
boxes = fg_boxes
labels = fg_labels
correspondance = fg_max_idx
else
boxes = torch.FloatTensor(0, 4)
labels = torch.IntTensor(0)
correspondance = torch.LongTensor(0)
end
end
-- add the ground truth box
if boxes:nElement() > 0 then
boxes = torch.cat({gtboxes, boxes}, 1)
labels = torch.cat({gtlabels, labels}, 1)
correspondance = torch.cat({torch.range(1, gtlabels:nElement()):type(
correspondance:type()), correspondance}, 1)
else
boxes = gtboxes
labels = gtlabels
correspondance = torch.range(1, gtlabels:nElement()):type(correspondance:type())
end
boxes = boxes:contiguous()
return {boxes = boxes, labels = labels, correspondance = correspondance,
obj_id = obj_id, obj_box = obj_box}
end
function BatchProviderVID:gen_rois(box_coll, im_size_coll)
local img_counter = 1
local rois, labels, gtboxes = {}, {}, {}
for vid_idx, vid in ipairs(box_coll) do
local im_size = im_size_coll[vid_idx]
for fr_idx, fr in ipairs(vid) do
local fr_labels = fr.labels
local fr_correspondance = fr.correspondance
local fr_boxes = fr.boxes
local fr_obj_id = fr.obj_id
fr_boxes[{{}, 1}]:mul(im_size[2])
fr_boxes[{{}, 3}]:mul(im_size[2])
fr_boxes[{{}, 2}]:mul(im_size[1])
fr_boxes[{{}, 4}]:mul(im_size[1])
fr_boxes = utils.calibrate_box(torch.round(fr_boxes), im_size[1], im_size[2])
local fr_gtboxes = fr_boxes:clone():zero()
local fg_idx = fr_labels:ge(2):nonzero():view(-1) -- all labels > 1 (>= 2)
local fg_correspondance = fr_correspondance:index(1, fg_idx)
--fr_gtboxes:index(1, fg_idx):copy(fr_boxes:index(1, fg_correspondance))
fr_gtboxes:indexCopy(1, fg_idx, fr_boxes:index(1, fg_correspondance))
fr_boxes = torch.cat({fr_boxes.new(fr_boxes:size(1), 1):fill(img_counter), fr_boxes}, 2)
-- this is not the last frame
if fr_idx ~= #vid then
-- Below are two ways of computing the motion prediction target:
-- 1) Making use of all data, from any box --> gtbox at next frame
-- 2) Only do prediction from gtbox at current frame --> gtbox at next frame
--local obj_idx = fr_obj_id:index(1, fg_correspondance):long()
--local tmp_idx = fg_idx
local obj_idx = fr_obj_id:long()
local tmp_idx = torch.range(1, obj_idx:nElement()):long()
local nxt_fr = vid[fr_idx+1]
local nxt_fr_obj_box = nxt_fr.obj_box
local cand_nxt_fr_gtboxes = nxt_fr_obj_box:index(1, obj_idx)
local valid = cand_nxt_fr_gtboxes[{{}, 1}]:ge(0):nonzero():view(-1)
cand_nxt_fr_gtboxes = cand_nxt_fr_gtboxes:index(1, valid)
tmp_idx = tmp_idx:index(1, valid)
end
table.insert(rois, fr_boxes)
table.insert(gtboxes, fr_gtboxes)
table.insert(labels, fr_labels)
img_counter = img_counter + 1
end
end
-- flatten
rois = torch.cat(rois, 1)
gtboxes = torch.cat(gtboxes, 1)
labels = torch.cat(labels, 1)
-- compute regression target
local bboxregr_vals = torch.FloatTensor(rois:size(1), 4*(self.class_num + 1)):zero()
for i,label in ipairs(labels:totable()) do
if label > 1 then
local out = bboxregr_vals[i]:narrow(1,(label-1)*4 + 1,4)
utils.convertTo(out, rois[i]:narrow(1,2,4), gtboxes[i])
out:add(-1,self.bbox_regr.mean):cdiv(self.bbox_regr.std)
end
end
return rois, labels, bboxregr_vals
end
function BatchProviderVID:squeeze_im_to_tensor(images, im_size)
-- create single tensor with all images, padding with zero for different sizes
im_size = torch.cat(im_size, 2)
local channel = images[1]:size(2)
local max_shape = im_size:max(2):view(-1)
local im_tensor = torch.FloatTensor(self.batch_N,self.batch_T,channel,max_shape[1],max_shape[2]):zero()
for i,v in ipairs(images) do
im_tensor[{i, {}, {}, {1,v:size(3)}, {1,v:size(4)}}]:copy(v)
end
im_tensor = im_tensor:view(self.batch_N*self.batch_T,channel,max_shape[1],max_shape[2])
return im_tensor
end
function BatchProviderVID:crop_squeeze_im_to_tensor(images, boxes, im_size)
-- compute aspect ratios
local ar = {}
for idx, siz in ipairs(im_size) do
ar[idx] = siz[1] / siz[2]
end
-- create single tensor with all images, padding with zero for different sizes
im_size = torch.cat(im_size, 2)
local max_shape = im_size:max(2):view(-1)
local im_tensor = torch.FloatTensor(self.batch_N,self.batch_T,3,max_shape[1],max_shape[2]):zero()
for i,v in ipairs(images) do
im_tensor[{i, {}, {}, {1,v:size(3)}, {1,v:size(4)}}]:copy(v)
end
im_tensor = im_tensor:view(self.batch_N*self.batch_T,3,max_shape[1],max_shape[2])
return im_tensor
end
--------------------------------------------
function BatchProviderVID:light_sample_target(video_name, frame_idx_seq, flat_flag)
-- perform light sample with certain target, without touching ground-truth
collectgarbage()
-- loop over videos
local prop = self:load_prop(video_name)
local box_coll = {}
for _, frame_idx in ipairs(frame_idx_seq:totable()) do
-- get proposals
local rois, roi_scores = self:slice_prop(prop, frame_idx)
table.insert(box_coll, {rois=rois, roi_scores=roi_scores})
end
-- get image
local images, im_sizes = self:getImages(video_name, frame_idx_seq, 0, 0)
-- scale the boxes into absolute coordinate system
local rois = {}
local hgt = im_sizes[1]
local wid = im_sizes[2]
local scaler = torch.FloatTensor({wid, hgt, wid, hgt}):view(1, 4)
for frm_idx, frm in ipairs(box_coll) do
local roi_scores = frm.roi_scores
rois[frm_idx] = utils.calibrate_box(torch.cmul(
frm.rois, scaler:expandAs(frm.rois)):round(), hgt, wid)
if self.test_batch_size then
local sortval, sortidx = torch.sort(roi_scores, 1, true)
sortidx = sortidx[{{1, math.min(self.test_batch_size, roi_scores:nElement())}}]
rois[frm_idx] = rois[frm_idx]:index(1, sortidx)
end
end
return images, rois
end
--------------------------------------------
function BatchProviderVID:light_sample(flat_flag, spec_video_name, spec_start_frm)
collectgarbage()
local collected_N = 0
local box_coll, image_coll, im_size_coll = {}, {}, {}
local record = {vid={}, frm={}}
-- loop over videos
while collected_N < self.batch_N do
local video_name
if not spec_video_name then
local video_idx = self:get_next_video_idx()
video_name = self.video_names[video_idx]
else
video_name = spec_video_name
end
local obj = self.anno[video_name].obj
local prop = self:load_prop(video_name)
local T = #self.anno[video_name].im_list
local indicator = torch.ByteTensor(T, #obj):zero()
local frlen, start_idx, end_idx = {}, {}, {}
local vid_box_coll = {}
local gtlabels = {}
-- figure out how many frames are there for each object
for oi, cur_obj in ipairs(obj) do
indicator[{{cur_obj.start_frame, cur_obj.end_frame}, oi}]:fill(1)
frlen[oi] = cur_obj.end_frame - cur_obj.start_frame + 1
start_idx[oi] = cur_obj.start_frame
end_idx[oi] = cur_obj.end_frame
gtlabels[oi] = self.cat_name_to_id[cur_obj.category]
assert(gtlabels[oi] ~= nil)
end
frlen = torch.IntTensor(frlen)
gtlabels = torch.IntTensor(gtlabels)
local min_len = (self.batch_T - 1) * self.frame_stride + 1
local valid_oi = torch.nonzero(frlen:ge(min_len))
if valid_oi:nElement() > 0 then
valid_oi = valid_oi:view(-1)
collected_N = collected_N + 1
record.vid[collected_N] = video_name
record.frm[video_name] = {}
local oi = valid_oi[{torch.random(valid_oi:nElement())}]
local oi_start_idx = start_idx[oi]
local oi_end_idx = end_idx[oi]
local fi_start
if not self.non_redundant_sampling then
fi_start = torch.random(oi_start_idx, oi_end_idx - min_len + 1)
else
local hit = self.sampling_hist[video_name][{{oi_start_idx, oi_end_idx - min_len + 1}}]
local randperb = torch.randperm(hit:nElement()):type('torch.LongTensor')
local randperb_hit = hit:index(1, randperb)
local _, min_idx = torch.min(randperb_hit, 1)
min_idx = randperb[min_idx[1]]
hit[min_idx] = hit[min_idx] + 1
fi_start = oi_start_idx + min_idx - 1
end
if spec_start_frm then
fi_start = spec_start_frm
end
local fi_end = fi_start + min_len - 1
for _, frame_idx in ipairs(torch.range(fi_start, fi_end, self.frame_stride):totable()) do
table.insert(record.frm[video_name], frame_idx)
local frame_valid_oi = torch.nonzero(indicator[frame_idx]):view(-1)
-- get ground truth boxes
local gtboxes = torch.FloatTensor(frame_valid_oi:nElement(), 4):zero()
for ii, oii in ipairs(frame_valid_oi:totable()) do
--local tmp_idx = torch.nonzero(obj[oii].boxes[{{}, 2}]:eq(frame_idx)):view(-1)
local tmp_idx = frame_idx - obj[oii].start_frame + 1
gtboxes[ii] = obj[oii].boxes[{tmp_idx, {3, 6}}]
end
-- get proposals
local rois, roi_scores = self:slice_prop(prop, frame_idx)
-- select top K
if self.test_batch_size then
local sortval, sortidx = torch.sort(roi_scores, 1, true)
sortidx = sortidx[{{1, math.min(self.test_batch_size, sortidx:nElement())}}]
rois = rois:index(1, sortidx)
end
-- match rois and gtboxes
table.insert(vid_box_coll, {rois=rois, roi_scores=roi_scores, gtboxes=gtboxes})
end
table.insert(box_coll, vid_box_coll)
-- get image
local frame_seq = torch.range(fi_start, fi_end, self.frame_stride)
local images, im_sizes
images, im_sizes = self:getImages(video_name, frame_seq, 0, 0)
table.insert(image_coll, images)
table.insert(im_size_coll, im_sizes)
record.frm[video_name] = torch.IntTensor(record.frm[video_name])
end
end
-- scale the boxes into absolute coordinate system
local rois = {}
for vid_idx, vid in ipairs(box_coll) do
local hgt = im_size_coll[vid_idx][1]
local wid = im_size_coll[vid_idx][2]
local scaler = torch.FloatTensor({wid, hgt, wid, hgt}):view(1, 4)
local vid_rois = {}
for frm_idx, frm in ipairs(vid) do
table.insert(vid_rois, utils.calibrate_box(torch.cmul(
frm.rois, scaler:expandAs(frm.rois)):round(), hgt, wid))
end
table.insert(rois, vid_rois)
end
if flat_flag then
image_coll = self:squeeze_im_to_tensor(image_coll, im_size_coll)
local new_rois = {}
for vid_idx, vid in ipairs(rois) do
for frm_idx, frm in ipairs(vid) do
table.insert(new_rois, frm)
end
end
rois = new_rois
end
-- pack im_size_coll into record
record.im_size = im_size_coll
return image_coll, rois, record
end
function BatchProviderVID:slice_prop(prop, frame_idx)
local rois, roi_scores
if torch.isTensor(prop.boxes) then
rois = prop.boxes[{frame_idx, {}, {}}]
roi_scores = prop.scores[{{}, frame_idx}]
elseif torch.type(prop.boxes) == 'table' then
rois = prop.boxes[frame_idx]
roi_scores = prop.scores[frame_idx]
else
assert(false, 'Unknown proposal format.')
end
return rois, roi_scores
end
function BatchProviderVID:sample()
collectgarbage()
self.fg_num_each = self.fg_fraction * self.batch_size
self.bg_num_each = self.batch_size - self.fg_num_each
local collected_N = 0
local box_coll, image_coll, im_size_coll = {}, {}, {}
local do_flip = torch.FloatTensor(self.batch_N):random(0,1)
local batch_large_hw_ratio
-- loop over videos
while collected_N < self.batch_N do
local video_idx = self:get_next_video_idx()
local video_name = self.video_names[video_idx]
local obj = self.anno[video_name].obj
local prop = self:load_prop(video_name)
local T = #self.anno[video_name].im_list
local indicator = torch.ByteTensor(T, #obj):zero()
local frlen, start_idx, end_idx = {}, {}, {}
local vid_box_coll = {}
local gtlabels = {}
-- figure out how many frames are there for each object
for oi, cur_obj in ipairs(obj) do
indicator[{{cur_obj.start_frame, cur_obj.end_frame}, oi}]:fill(1)
frlen[oi] = cur_obj.end_frame - cur_obj.start_frame + 1
start_idx[oi] = cur_obj.start_frame
end_idx[oi] = cur_obj.end_frame
gtlabels[oi] = self.cat_name_to_id[cur_obj.category]
assert(gtlabels[oi] ~= nil)
end
frlen = torch.IntTensor(frlen)
gtlabels = torch.IntTensor(gtlabels)
local min_len = (self.batch_T - 1) * self.frame_stride + 1
local valid_oi = torch.nonzero(frlen:ge(min_len))
-- figure out the aspect ratio
local large_hw_ratio
if self.anno[video_name].im_size and self.anno[video_name].im_size:nElement() > 0 then
local hgt = self.anno[video_name].im_size[1][1]
local wid = self.anno[video_name].im_size[1][2]
large_hw_ratio = (hgt/wid) > 1
else
local img_filename = self.anno[video_name].im_list[1]
img_filename = paths.concat(self.img_dir, video_name, img_filename)
local im = image.load(img_filename, 3, 'double')
large_hw_ratio = (im:size(2) / im:size(3)) > 1
end
if collected_N == 0 then
batch_large_hw_ratio = large_hw_ratio
end
if valid_oi:nElement() > 0 and batch_large_hw_ratio == large_hw_ratio then
valid_oi = valid_oi:view(-1)
collected_N = collected_N + 1
local flip = do_flip[collected_N] == 1
--local oi = valid_oi[{torch.random(valid_oi:nElement())}]
local _, oi = torch.min(self.cat_counter:index(1, gtlabels:index(1, valid_oi):long()), 1)
oi = valid_oi[oi[1]]
local oi_start_idx = start_idx[oi]
local oi_end_idx = end_idx[oi]
local fi_start
if not self.non_redundant_sampling then
fi_start = torch.random(oi_start_idx, oi_end_idx - min_len + 1)
else
local hit = self.sampling_hist[video_name][{{oi_start_idx, oi_end_idx - min_len + 1}}]
local randperb = torch.randperm(hit:nElement()):type('torch.LongTensor')
local randperb_hit = hit:index(1, randperb)
local _, min_idx = torch.min(randperb_hit, 1)
min_idx = randperb[min_idx[1]]
hit[min_idx] = hit[min_idx] + 1
fi_start = oi_start_idx + min_idx - 1
end
local fi_end = fi_start + min_len - 1
for _, frame_idx in ipairs(torch.range(fi_start, fi_end, self.frame_stride):totable()) do
local frame_valid_oi = torch.nonzero(indicator[frame_idx]):view(-1)
-- get ground truth boxes
local gtboxes = torch.FloatTensor(frame_valid_oi:nElement(), 5):zero()
for ii, oii in ipairs(frame_valid_oi:totable()) do
--local tmp_idx = torch.nonzero(obj[oii].boxes[{{}, 2}]:eq(frame_idx)):view(-1)
local tmp_idx = frame_idx - obj[oii].start_frame + 1
gtboxes[{ii, {1, 4}}]:copy(obj[oii].boxes[{tmp_idx, {3, 6}}])
gtboxes[{ii, 5}] = oii
end
-- get proposals
local rois, roi_scores = self:slice_prop(prop, frame_idx)
if flip then
rois = utils.flipBoxes_01(rois)
gtboxes = utils.flipBoxes_01(gtboxes)
end
-- match rois and gtboxes
table.insert(vid_box_coll, self:organize_boxes(gtboxes, rois,
gtlabels:index(1, frame_valid_oi), #obj))
end
table.insert(box_coll, vid_box_coll)
-- get image
local frame_seq = torch.range(fi_start, fi_end, self.frame_stride)
local images, im_sizes
images, im_sizes = self:getImages(video_name, frame_seq, do_flip[collected_N], 1, self.spec_im_size)
table.insert(image_coll, images)
table.insert(im_size_coll, im_sizes)
end
end
-- put all images into a giant tensor
local images = self:squeeze_im_to_tensor(image_coll, im_size_coll)
-- get rois and regression target
local rois, labels, bboxregr_vals = self:gen_rois(box_coll, im_size_coll)
---- DIAGONOZE DISPLAY
if DEBUG then
local qtwidget = require 'qtwidget'
local win = qtwidget.newwindow(images:size(4), images:size(3))
for debug_idx = 1, rois:size(1) do
local debug_label = labels[debug_idx]
if debug_label > 1 then
local debug_img_idx = rois[debug_idx][1]
local out = bboxregr_vals[debug_idx]:narrow(1,(debug_label-1)*4 + 1,4)
out:cmul(self.bbox_regr.std):add(1,self.bbox_regr.mean)
local raw_box = rois[{debug_idx, {2, 5}}]
utils.convertFrom(out, raw_box, out)
local x1 = out[1]
local y1 = out[2]
local x2 = out[3]
local y2 = out[4]
image.display({image = images[{debug_img_idx, {}, {}, {}}], win = win})
win:fill()
win:rectangle(x1, y1, x2-x1+1, y2-y1+1)
win:stroke()
print(string.format('cat:%s', self.cat_id_to_name[debug_label]))
print('-----')
end
end
end
if self.seq_center then
assert(self.batch_T % 2 == 1, 'You need to have odd number of frames to do seq_center mode.')
local center_frm_idx = (self.batch_T - 1) / 2 + 1
local center_idx = rois[{{}, 1}]:eq(center_frm_idx):nonzero():view(-1)
rois = rois:index(1, center_idx)
labels = labels:index(1, center_idx)
bboxregr_vals = bboxregr_vals:index(1, center_idx)
end
if self.parallel_roi_batch > 1 then
local roi_n = rois:size(1)
local img_n = images:size(1)
rois = torch.cat({rois, torch.range(1, roi_n):float():view(roi_n, 1)}, 2)
local batch_n = img_n / self.parallel_roi_batch
local roi_img_idx = rois[{{}, 1}]
local roi_by_img = {}
local roi_count_by_img = {}
for idx = 1, img_n do
local val_roi_idx = roi_img_idx:eq(idx):nonzero()
assert(val_roi_idx:nElement() > 0, 'It cant be true that there is no roi at all for an image.')
val_roi_idx = val_roi_idx:view(-1)
roi_by_img[idx] = rois:index(1, val_roi_idx)
roi_count_by_img[idx] = roi_by_img[idx]:size(1)
end
roi_count_by_img = torch.FloatTensor(roi_count_by_img)
local max_rois = torch.max(roi_count_by_img)
for idx = 1, img_n do
local mod_idx = (idx - 1) % batch_n + 1
roi_by_img[idx][{{}, 1}]:fill(mod_idx)
if roi_count_by_img[idx] < max_rois then
local fill_n = max_rois - roi_count_by_img[idx]
local candTensor
if fill_n > roi_by_img[idx]:size(1) then
local K = math.ceil(fill_n / roi_by_img[idx]:size(1))
candTensor = torch.repeatTensor(roi_by_img[idx], K, 1)
else
candTensor = roi_by_img[idx]
end
roi_by_img[idx] = torch.cat({candTensor[{{1, fill_n}, {}}], roi_by_img[idx]}, 1)
end
end
rois = torch.cat(roi_by_img, 1)
local sel_idx = rois[{{}, 6}]:long()
rois = rois[{{}, {1,5}}]
labels = labels:index(1, sel_idx)
bboxregr_vals = bboxregr_vals:index(1, sel_idx)
end
local batches = {images, rois}
local targets = {labels, {labels, bboxregr_vals}, g_donkey_idx}
-- stats
local counts = torch.histc(labels:float(), self.class_num+1, 1, self.class_num+1)
self.cat_counter = self.cat_counter + counts
return batches, targets
end
function BatchProviderVID:mine_hard_neg(scan_score, gt_class, opt)
self.logsoftmax = self.logsoftmax or nn.LogSoftMax():cuda()
local backprop_fg_num = math.floor(opt.backprop_batch_size * opt.fg_fraction)
local backprop_bg_num = opt.backprop_batch_size - backprop_fg_num
local prob = self.logsoftmax:forward(scan_score)
local flat_idx = gt_class + torch.range(0, opt.num_classes * (prob:size(1) - 1), opt.num_classes):cuda()
local gt_prob = prob:view(-1):index(1, flat_idx:long())
local pos_idx = gt_class:gt(1):nonzero()
if pos_idx:nElement() > 0 then
pos_idx = pos_idx:view(-1)
local pos_n = pos_idx:nElement()
local sel_idx = torch.randperm(pos_n):narrow(1, 1, math.min(backprop_fg_num, pos_n))
pos_idx = pos_idx:index(1, sel_idx:long())
end
local neg_idx = gt_class:eq(1):nonzero()
if neg_idx:nElement() > 0 then
neg_idx = neg_idx:view(-1)
local y, i = torch.sort(gt_prob:index(1, neg_idx), 1)
i = i:narrow(1, 1, math.min(backprop_bg_num, neg_idx:nElement()))
neg_idx = neg_idx:index(1, i)
end
local final_idx
if pos_idx:nElement() > 0 and neg_idx:nElement() > 0 then
final_idx = torch.cat({pos_idx, neg_idx}, 1):long()
elseif pos_idx:nElement() > 0 then
final_idx = pos_idx:long()
elseif neg_idx:nElement() > 0 then
final_idx = neg_idx:long()
else
assert(false, 'Unexpected.')
end
return final_idx
end
function BatchProviderVID:mine_hard_neg_v2(scan_box, scan_score, gt_class, opt)
self.logsoftmax = self.logsoftmax or nn.LogSoftMax():cuda()
local N = scan_score:size(1)
local prob = self.logsoftmax:forward(scan_score)
local flat_idx = gt_class + torch.range(0, opt.num_classes * (N - 1), opt.num_classes):cuda()
local gt_prob = prob:view(-1):index(1, flat_idx:long())
local sortval, sortidx = torch.sort(gt_prob, 1)
local box = torch.FloatTensor(N, 5)
box:narrow(2, 1, 4):copy(scan_box:index(1, sortidx))
box:select(2, 5):copy(-sortval)
local final_idx = utils.nms_dense(box, opt.ohem_nms_thresh)
final_idx = sortidx:index(1, final_idx)
final_idx = final_idx:narrow(1, 1, math.min(opt.backprop_batch_size, final_idx:nElement()))
return final_idx
end