-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_helper.py
212 lines (169 loc) · 9.36 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import json
import os
from tqdm import tqdm
from dataclasses import dataclass
from typing import List, Optional
import random
import torch
from torch.utils.data import Dataset, TensorDataset
@dataclass(frozen=True)
class InputExample:
qid: str
question: str
explanation: List[str]
choices: str
answer: str
is_statement: bool
class TrainingDataset(Dataset):
features: List[InputExample]
def __init__(self, features):
self.features = features
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputExample:
return self.features[i]
def load_raw_dataset(split, args):
data_path = os.path.join('./outputs', args.dataset, '{}.jsonl'.format(split))
dataset = []
with open(data_path, 'r') as fr:
for line_idx, line in tqdm(enumerate(fr), desc='processing {}'.format(data_path)):
example = json.loads(line)
dataset.append(
InputExample(
qid=example["id"],
question=example["statement"] if "statement" in example else example["question"],
explanation=example["explanation"],
choices=example["choices"] if "choices" in example else None,
answer=example["answer"],
is_statement="statement" in example,
)
)
for example in dataset[:2]:
print("*** Example ***")
print(example)
return dataset
def get_label_tensor(raw_label, tokenizer, args):
label_ids = tokenizer.encode(raw_label, add_special_tokens=False)
label_ids += [tokenizer.eos_token_id]
label_ids = label_ids[:args.max_dec_length]
label_ids += [-100] * (args.max_dec_length - len(label_ids))
return label_ids
def get_label_tensor_answer_only(raw_label, raw_label_without_answer, tokenizer, args):
label_ids = tokenizer.encode(raw_label, add_special_tokens=False)
label_ids += [tokenizer.eos_token_id]
label_ids = label_ids[:args.max_dec_length]
label_ids += [-100] * (args.max_dec_length - len(label_ids))
label_ids_without_answer = tokenizer.encode(raw_label_without_answer, add_special_tokens=False)
label_ids_without_answer = label_ids_without_answer[:args.max_dec_length]
label_ids_answer_only = label_ids.copy()
for idx in range(len(label_ids_without_answer)):
label_ids_answer_only[idx] = -100
decoder_input_ids = [tokenizer.pad_token_id] + [tokenizer.pad_token_id if _id == -100 else _id for _id in label_ids[:-1]]
return decoder_input_ids, label_ids_answer_only
def format_input(context, choices=None, counterfactual=False, add_task_prefix=True):
input_seq = ""
if add_task_prefix:
if counterfactual:
input_seq += "[counterfactual] "
else:
input_seq += "[factual] "
input_seq += context.strip()
if choices is not None:
input_seq += " \\n {}".format(choices.strip())
return input_seq
def format_output(explanation, answer, counterfactual=False, without_explanation=False, add_task_prefix=True):
output_seq = ""
if add_task_prefix:
if counterfactual:
output_seq += "[counterfactual] "
else:
output_seq += "[factual] "
if not without_explanation:
output_seq += explanation.strip()
output_seq += ' So the answer is '
output_seq_with_answer = output_seq + answer.strip()
return output_seq_with_answer, output_seq.strip()
class Data_Collator_for_Training(object):
def __init__(self, tokenizer, args, counterfactual=False):
self.tokenizer = tokenizer
self.args = args
self.counterfactual = counterfactual
def __call__(self, examples):
encoder_input_tensor = []
encoder_attention_mask_tensor = []
decoder_label_tensor = []
decoder_input_ids_tensor = []
for example_idx, example in enumerate(examples):
input_seq = format_input(example.question, example.choices, counterfactual=self.counterfactual, add_task_prefix=self.args.add_task_prefix)
inputs = self.tokenizer(input_seq, padding='max_length', max_length=self.args.max_enc_length, truncation=True)
if isinstance(example.explanation, list):
explanation = random.choice(example.explanation)
else:
explanation = example.explanation
output_seq, output_seq_without_answer = format_output(explanation, example.answer, counterfactual=self.counterfactual, without_explanation=self.args.without_explanation, add_task_prefix=self.args.add_task_prefix)
encoder_input_tensor.append(inputs['input_ids'])
encoder_attention_mask_tensor.append(inputs['attention_mask'])
if self.counterfactual:
decoder_input_ids, decoder_label = get_label_tensor_answer_only(output_seq, output_seq_without_answer, self.tokenizer, self.args)
decoder_input_ids_tensor.append(decoder_input_ids)
decoder_label_tensor.append(decoder_label)
else:
decoder_label_tensor.append(get_label_tensor(output_seq, self.tokenizer, self.args))
if self.counterfactual:
return tuple(torch.tensor(t) for t in [encoder_input_tensor, encoder_attention_mask_tensor, decoder_label_tensor, decoder_input_ids_tensor])
else:
return tuple(torch.tensor(t) for t in [encoder_input_tensor, encoder_attention_mask_tensor, decoder_label_tensor])
def get_tensor_dataset(split, tokenizer, args, counterfactual=False):
data_path = os.path.join('./data', args.dataset, '{}.jsonl'.format(split))
encoder_input_tensor = []
encoder_attention_mask_tensor = []
decoder_label_tensor = []
decoder_input_ids_tensor = []
with open(data_path, 'r') as fr:
for line_idx, line in tqdm(enumerate(fr), desc='processing {}'.format(data_path)):
example = json.loads(line)
if "question" in example:
if "choices" in example:
input_seq = format_input(example["question"], example["choices"], counterfactual=counterfactual, add_task_prefix=args.add_task_prefix)
else:
input_seq = format_input(example["question"], counterfactual=counterfactual, add_task_prefix=args.add_task_prefix)
else:
input_seq = format_input(example["statement"], counterfactual=counterfactual, add_task_prefix=args.add_task_prefix)
inputs = tokenizer(input_seq, padding='max_length', max_length=args.max_enc_length, truncation=True)
if isinstance(example["explanation"], list):
for explanation in example["explanation"][:5]:
output_seq, output_seq_without_answer = format_output(explanation, example["answer"], counterfactual=counterfactual, without_explanation=args.without_explanation, add_task_prefix=args.add_task_prefix)
encoder_input_tensor.append(inputs['input_ids'])
encoder_attention_mask_tensor.append(inputs['attention_mask'])
if counterfactual:
decoder_input_ids, decoder_label = get_label_tensor_answer_only(output_seq, output_seq_without_answer, tokenizer, args)
decoder_input_ids_tensor.append(decoder_input_ids)
decoder_label_tensor.append(decoder_label)
else:
decoder_label_tensor.append(get_label_tensor(output_seq, tokenizer, args))
else:
output_seq, output_seq_without_answer = format_output(example["explanation"], example["answer"], counterfactual=counterfactual, without_explanation=args.without_explanation, add_task_prefix=args.add_task_prefix)
encoder_input_tensor.append(inputs['input_ids'])
encoder_attention_mask_tensor.append(inputs['attention_mask'])
if counterfactual:
decoder_input_ids, decoder_label = get_label_tensor_answer_only(output_seq, output_seq_without_answer, tokenizer, args)
decoder_input_ids_tensor.append(decoder_input_ids)
decoder_label_tensor.append(decoder_label)
else:
decoder_label_tensor.append(get_label_tensor(output_seq, tokenizer, args))
encoder_input_tensor = torch.tensor(encoder_input_tensor, dtype=torch.long)
encoder_attention_mask_tensor= torch.tensor(encoder_attention_mask_tensor, dtype=torch.long)
decoder_label_tensor = torch.tensor(decoder_label_tensor, dtype=torch.long)
if counterfactual:
decoder_input_ids_tensor = torch.tensor(decoder_input_ids_tensor, dtype=torch.long)
for f1, f2, f3 in zip(encoder_input_tensor[:2], encoder_attention_mask_tensor[:2], decoder_label_tensor[:2]):
print("*** Example ***")
print("encoder input: %s" % tokenizer.decode(f1))
print("encoder attention mask: %s" % f2)
print("decoder output: %s" % tokenizer.decode([tid for tid in f3 if not tid == -100]))
if counterfactual:
for f4 in decoder_input_ids_tensor[:2]:
print("decoder input: %s" % tokenizer.decode(f4))
return TensorDataset(encoder_input_tensor, encoder_attention_mask_tensor, decoder_label_tensor, decoder_input_ids_tensor)
else:
return TensorDataset(encoder_input_tensor, encoder_attention_mask_tensor, decoder_label_tensor)