
Robust, Simple Page Segmentation
using Hybrid Convolutional MDLSTM Networks

Thomas M. Breuel

NVIDIA Research

Santa Clara, CA, USA

tbreuel@nvidia.com

Abstract— Analyzing and segmenting scanned documents is
an important step in optical character recognition. The problem
is difficult because of the complexity of 2D layouts, the small tol-
erance of segmentation errors in the output, and the relatively
small amount of labeled training data available. Traditional
approaches have relied on a combination of sophisticated geo-
metric algorithms, domain knowledge, heuristics, and carefully
tuned parameters. This paper describes the use of deep neural
networks, in particular a combination of convolutional and
multidimensional LSTM networks, for document image and
demonstrates that relatively simple networks are capable of fast,
reliable text line segmentation and document layout analysis
even on complex and noisy inputs, without manual parameter
tuning or heuristics. The method is easily adaptable to new
datasets by retraining and an open source implementation is
available.

I. INTRODUCTION

Optical character recognition (OCR) of printed documents

starts with physical layout analysis, which divides scanned

pages into blocks containing text, tables, images; identifies

column boundaries; and finds text lines. Text lines are then

extracted and passed on to a text line recognizer. A large

number of methods have been proposed for the problem

of layout analysis, including XY-cuts[9], mathematical mor-

phology[15, 10], geometric matching[3], and tab stop detec-

tion[19]. Machine learning has been incorporated into some

of these algorithms, for example into HMM-based layout

analysis[11], white space classification[1], and some forms

of neural networks[14, 7]. Many layout analysis algorithms

analyze page content as connected components, so they

require binarized input. Furthermore, algorithms often look

for geometric patterns such as parallelism, co-linearity, and

rectangles, so they often require dewarped and deskewed

inputs. Binarization, dewarping, and deskewing have all

themselves been subject to extensive research.

Over the last few years, there have been big advances

in the use of deep convolutional and recurrent networks

for image segmentation and object recognition[17, 13]. Fur-

thermore, the use of GPUs for deep learning has made it

possible to run deep convolutional networks over large and

high resolution images. Such methods have been applied to

text detection and text recognition[12] in natural images.

However, printed OCR problems are different from scene

text problems in that they require large amounts of text to

be recognized at very low error rates, involve the recognition

of many text lines that span the entire image require accurate

reading order determination, and operate on high resolution

images.

While similar to semantic segmentation, layout analysis

differs from common semantic segmentation problems in

computer vision in that information necessary for segmenting

tends to be sparse and exhibit long-range dependencies, for

example, in the form of column boundaries, separators, and

whitespace. Multidimensional LSTMs are good at capturing

such dependencies[6]. Furthermore, a straightforward for-

mulation of text line segmentation in terms of partitioning

the page into text line regions and background/other regions

does not work well because gaps between text line regions

tend to be small. Those are the reasons behind the two

major design decisions in the deep segmenter: using a hybrid

convolutional-LSTM model and predicting text centerlines

instead of text line regions.

High accuracy text line recognition for printed OCR

has been described based on LSTM networks[4] and also

works directly on warped grayscale images without prior

binarization.

This paper describes a hybrid convolutional-recurrent net-

work that addresses the document layout analysis problem by

performing text line detection; by preprocessing the training

data and the objective functions, this also addresses border

noise removal, text frame detection, text/math segmentation,

text/image segmentation, and column detection. The resulting

layout analysis system is simple, yet performs as well as state

of the art open source systems[19].

II. LAYOUT ANALYSIS WITH DEEP LEARNING

A. Training Data

We formulate the layout analysis problem as an image to

image transformation problem. As the input to the model,

we use either scanned binary images or grayscale images.

The output that the model is trained on is a binary image

constructed from page segmentation ground truth. For all

training reported in this paper, we use (subsets of) the Uni-

versity of Washington Database (UW3). UW3 ground truth

indicates page segmentation at multiple levels (paragraphs,

lines, words). Training data was augmented by random rota-

tions by ±2 deg, random translations by ±5% and random

anisotropic scaling by ±5%.

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

2017 14th IAPR International Conference on Document Analysis and Recognition

2379-2140/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDAR.2017.125

733

Fig. 1. Layout analysis is treated as an image-to-image transformation performed by a deep neural network trained on layout analysis data. The most
basic form of training trains a deep neural network model to transform the original scanned page image into representation of the centerlines of the text
lines (with the training data derived from the ground truth layout data). Such a deep model learns to perform both text line detection and border noise
removal simultaneously. By preprocessing either the input image (removing border noise) or masking the errors during backpropagation, we can train a
different kind of layout analysis model that performs text line detection without border noise removal.

By preprocessing the input images for layout analysis in

different ways and constructing different targets for training,

we can obtain deep neural networks that perform a variety

of different layout analysis tasks. To illustrate this consider

training a text line detector via image-to-image transforma-

tion. The ground truth for such training consists of a scanned

document page together with a map of where the text lines

are. The scanned document page may contain text lines

from facing pages as well, but these additional text lines

are not labeled in the ground truth as text lines, since they

are considered border noise. Solving the text line detection

problem successfully given training data that contains text

lines within both the page and the border noise requires

that a deep network not only learn the text line detection

problem, but also the border noise detection problem. On

the other hand, if we mask out the border noise (using the

ground truth layout labels) prior to training, then the deep

network can solve the text line detection problem without

ever needing to make the distinction between text lines within

border noise, and text lines within the main page.

Furthermore, by constructing different kinds of target

images, we have more control over the kinds of layout

analysis model we obtain. For example, by choosing as a

target a binary representation of the center of each text line,

we obtain a text line detector; if instead we choose as a

target a binary mask covering each column, we obtain a text

column detector. We will see examples of this later, but the

focus of this paper is text line based segmentation.

For training a deep network that performs layout analysis

by an image-to-image transformation, we need to construct

an image target that encodes the position of text lines in the

form of a binary image. Document layout analysis ground

truth is usually given in the form of bounding boxes. An

obvious representation of text line ground truth is therefore

to take the bounding boxes for each text line from the

layout analysis ground truth, render those bounding boxes

as a binary image, and use that binary image as a target

for the image-to-image training. However, that approach

does not work very well because text line bounding boxes

frequently touch or overlap; even if the deep model learned

the image transformation perfectly, we could still not recover

the position of the individual text lines from the output of

the network.

A better approach is to learn a marker line for the location

of the text line. Obvious markers are the center line of the

bounding box or the baseline of the text line; however, both

of those markers are not stable under small changes of the

input image. The marker line we actually use is the same

centerline that has been used successfully for 1D LSTM-

based character recognition as described in [5]. That marker

line has the advantage that it seems to be quite stable under

noise and changes in image content. It can also be computed

easily with simple image processing operations. In [5], the

marker line is used for dewarping the text line image; here,

instead, we render the location of the marker line back into

the page image to in order to obtain a target binary image

for layout analysis training. The marker line computation is

carried out as follows:

• The original page image is binarized (this is just done

for the construction of the ground truth) and inverted.

734734734734734734

(a)

(b)

Fig. 2. Full end-to-end page layout analysis with a single deep network. The image shows representative outputs for complex inputs segmented using
the text line segmenter. Figure (a) shows a two column document with part of a column from a facing page present in the image. The text line segmenter
described in Section II outputs three columns in this case, but the text line segmenter successfully removes the text lines outside the page frame. Figure (b)
shows a document containing figures, text-in-figures, text on facing pages, binarization noise, and mathematical formulas. After the text line segmenter
successfully labels only the actual text line; this page shows two areas of uncertainty: some mathematical formulas are still assigned a nonzero probability
of being text, and the page number is considered ambiguous for being part of the body text line.

• For each text line bounding box in the ground truth,

we extract a text line image consisting of the connected

components contained in the bounding box.

• The text line image is smoothed with an anisotropic

Gaussian of with dimensions of approximately (h/2, h)
where h is the height of the bounding box of the text

line.

• At each horizontal position, we find the maximum along

the vertical; this is an approximate centerline.

• The centerline itself is smoothed with a 1D Gaussian

with σ ≈ h/3.

• We construct a binary image representing the centerline.

• The binary image is dilated by a 3 pixels.

• All the images of centerlines are reassembled into a full

resolution page image.

Examples of marker line images can be seen on the right

hand side of Figure 2 (those marker line images are actually

the output from the deep layout analysis model, but since the

model learns the task nearly perfectly, they look identical to

the training targets).

For all training reported in this paper, text lines higher

than 65 pixels (mostly titles) were removed from training

and evaluation. This is because large text line recognition

using the approach described in this paper is better handled

via a multi-resolution approach instead of training a single

network to handle both small and large text lines, both

because we would need a deeper network to handle a larger

range of scales in a single network, and because large text

uses different character shapes from small text. Concretely,

large text lines can be recognized in practice by training a

735735735735735735

Fig. 3. The deep neural network model for which error rates are reported in the paper. Unlike many other models used for deep segmentation, we did
not implement separate upscaling layers, and instead simply scaled up the per-pixel classification output back to the original image size.

separate page segmentation and text recognition pipeline on

input images that have been scaled down by a linear factor

of 4 but is otherwise identical. The regular, unscaled pipeline

covers font sizes from about 5 pt to 24 pt, while the scaled-

down pipeline coves font sizes from about 20 pt to 96 pt.

For the purposes of this paper, however, we only evaluate

the segmentation pipeline for regular-sized text lines.

As already mentioned above, some training was carried out

with masked errors. In particular, in some cases, errors were

only propagated for a region close to the target centerlines.

Such error propagation masks were constructed by applying

morphological dilation to the binary centerline images

B. Models

The models used for layout analysis are simple combina-

tions of convolutional, max pooling, and separable multidi-

mensional LSTM layers[8].

The structure of the best model among those tried is shown

in Figure 3; this model was found after exploring different

numbers of convolutional layers, different image depths, and

different numbers of 2D LSTM layers.

Inputs to these models are full, high resolution page im-

ages. Outputs are predictions of the target centerline image.

Note that the output is lower resolution than the input, so

after output prediction, the output is rescaled back to the

original page resolution (it would have been possible to use

a U-net-like architecture[16], but that was not necessary).

The size of the morphological dilation in the construction

of the ground truth is chosen such that centerlines are still

continuous after the subsampling implied by the max pooling

operations.

Training these models is memory limited due to the high

resolution of both the inputs and the outputs (a single high

resolution page image is the equivalent of a batch size of

2000 for CIFAR-10 training). Most of the memory during

training is taken up by the activations and deltas computed

and stored during the forward and backwards passes; mem-

ory usage during inference is much smaller. The 2D LSTM

layer is an essential component of these models, since it can

capture and propagate structural information across the entire

page. This appears to be important for aspects of page layout

analysis like column detection and page frame detection.

The final output nonlinearity is a sigmoid and the networks

are trained using an MSE criterion.

C. Segmentation

The output of the deep network model is a per-pixel

probability estimate representing the probability that the

pixel is part of a centerline. In order to transform this

probability map into a page segmentation, we follow the

following steps:

• Threshold the output probability map with an empiri-

cally determined threshold (0.4 for the best networks).

• Label the connected components in the binary centerline

image.

• Assign the centerline labels to all overlapping and

nearby connected components.

Text lines are arranged into reading order using the algo-

rithm and implementation described in [2].

D. Evaluation

Several methods have been proposed for document layout

analysis. Many such evaluation schemes assume layouts

that consist of a nested hierarchy of layout elements; such

methods are not well suited for the evaluation of a segmenter

like the center line segmenter, both because it outputs non-

hierarchical outputs and because it works for distorted and

curled text lines. For the evaluation described here, we use

a method based on bipartite graphs.

Both the ground truth segmentation and the output of a

page segmenter consist of distinct integer labels for subsets

page image pixels By overlaying the ground truth segmenta-

tion and the segmentation output, we obtain a bipartite graph

736736736736736736

Fig. 4. Histograms showing the number of documents with the number of errors of each type for the deep segmenter (left bars, blue), and the tab-based
segmenter (right bars, green). The deep segmenter used only thresholding and proximity-based assignment of connected components to centerlines, as
described in the text; there was no further postprocessing. For a perfect segmenter, the leftmost histogram bin would be 1600 (zero errors on each page),
with all other bars being zero.

between ground truth labels and segmentation labels. This

bipartite graph contains several subgraphs:

• A unique correspondence between truth and output

labels (a single edge connection) represents a correct

segmentation.

• A ground truth label that corresponds to several output

labels represents a split text line (oversegmentation).

Split text lines in segmentations often occur when

justified text lines contain space characters that have

been stretched. They are usually not serious since they

occur in paragraphs and do not affect the textual output.

• A segmentation label that does not correspond to a

ground truth label represents an extra text line (false

alarm). Extra text lines are often detected inside figures

and mathematical formulas and can be removed either

by postprocessing, or by changing the training method

to train not just for text line detection, but also text/im-

age detection and page frame removal.

• An output label that corresponds to several ground truth

labels represents a merged or undersegmented text line.

Merged text lines are the most serious segmentation

errors since they cannot be corrected by later processing

stages.

• An ground truth label that corresponds to no segmenta-

tion label represents a missing output. Missing outputs

are also serious segmentation errors because they can

also not be recovered from.

This procedure is essentially the procedure described in [18].

However, we report statistics on the number of documents

containing each type of error in addition to the average over-

all number of errors across the whole database in Figure 6

Evaluations are performed in two different ways. For

comparison with other OCR systems, we compute a full text

line segmentation of each original binary page using each

OCR system and the compute the bipartite graph from the

labeled binary images. We can also apply the bipartite graph

evaluation above directly on the binary centerline images,

which gives very similar results, but is quicker to compute

and works even for strongly distorted document images.

Errors were estimated by five-fold cross-validation.

III. RESULTS

Deep learning models trained using the above methods

yield very low error rates in terms of least square error of

the output image relative to ground truth. However, that error

measure tells us little about the actual performance of the

method compared to traditional layout analysis algorithms.

To measure that, we need to actually measure layout analysis

errors in terms of split and merged text lines.

As a baseline for the evaluation, we used the Tesseract tab-

based segmenter, a widely used open source layout analysis

engine that has good performance on printed documents.

Whether or not the Tesseract segmenter is the best existing

open source segmentation method, it provides an easily re-

producible baseline for future experiments and comparisons.

The experiments were also limited to the UW3 database of

document images, which represents a good cross section of

printed documents for performance evaluations and provides

the necessary ground truth labels for training.

For the performance evaluation, we trained models using

a 10:1 emphasis on propagating errors in the output that

are within 20 pixels of the centerline during training. Input

training images were binary UW3 images cropped to the

actual page frame, resulting in a textline detector without

boundary noise removal. This was chosen for the evalua-

tion since Tesseract’s tab-based segmenter does not perform

boundary noise removal either. Representative output from

these models is shown in Figure 2.

All training and testing was carried out on mid-range

desktop machines using consumer GTX 1060 (6GB) and

GTX 1080 (8GB) graphics cards. The prediction pass is

the computationally most intensive part of the segmentation

and takes about 0.1 to 0.5 seconds (depending on the

complexity of the model) for a 2600 x 3300 pixel image

(letter size at 300 dpi). Most of the segmentation overhead is

in unoptimized Python code used for loading, transforming,

and saving segmentations, but even with all of that overhead

included, page segmentation takes less than two seconds per

page.

The histograms in Figure 4 compare the performance

of the segmenter described here against Tesseract’s tab-

737737737737737737

Fig. 5. Text line finding and text/image/math discrimination applied directly to warped, noisy grayscale images. From left to right: (a) grayscale page
image with simulated projective transformation, non-linear page warping, an illumination model, and noise, (b) text lines found by the deep text line
segmenter, (c) detail from the input page. In addition to text lines being detected correctly, text/math (and text/image, text/graphics discrimination; not
shown) also continue to work when operating directly on grayscale images.

merged split extra missing

Tab Segmenter 0.79 0.91 12.76 0.32
Deep Segmenter 0.30 0.65 2.83 1.13

Fig. 6. Average number of occurrences of each error per page for the tab
segmenter and the deep segmenter, evaluated on UW3. The only measure
that the deep segmenter is worse on is on missing components; these appear
to be largely due to text lines consisting primarily of mathematical formulas
in running text, which are labeled as text but are otherwise similar to display
formulas.

based segmenter[19] on the UW3 database. In addition to

the histograms, average numbers of per page errors are

reported in Figure 6. Output for the deep segmenter used only

thresholding and proximity-based assignment of connected

components to centerlines, as described above, with no

further postprocessing.

The number of merged text lines is smaller using the deep

segmenter than with tab based segmentation. In order to

achieve such low error rates on merged text lines, the al-

gorithm has to perform consistently well on segmenting text

columns, often a difficult problem, since interword spacing

and column spacing can be quite similar. Keeping the error

rate for merged text lines low is one of the most important

criteria for a good layout analysis method because merged

text lines are very hard to recover from in postprocessing.

On splits, the deep segmenter generates fewer splits on

average, although the distribution is slightly different from

that of the tab segmenter. These splits are mostly due to large

amounts of whitespace inside paragraphs in the presence of

proportional spacing and large fonts. A second source of

such split lines is the fact that UW3 ground truth contains a

significant number of components that are spatially widely

separated but grouped together on semantic grounds. Split

text lines are usually easy to recover from using simple

heuristic post-processing, although their number may simply

be decreased further with additional training data.

The deep segmenter generates far fewer extra components

per page; this appears to be due to its ability to distinguish

text zones, math zones, graphics zones, and image zones with

high accuracy. The tab-based segmenter appears to pick up

components from those zones with some regularity.

The tab-based segmenter misses somewhat fewer text line

per page on average. On examination, this appears to be due

to the deep segmenter rejecting mathematical formulas in the

body text as text line regions. This is not a problem for text

recognition (since such regions do not represent recognizable

text), and it could be addressed by different training data.

IV. OTHER APPLICATIONS

The previous results on text line detection and segmen-

tation have shown deep learning to be a feasible approach

for text line segmentation in scanned binary document im-

ages, competitive with existing open source layout analysis

methods.

Without detailed benchmarking, we wanted to explore two

additional questions: whether the methods are applicable to

distorted grayscale images like those that might be obtained

from digital cameras, and whether the methods can also solve

other, related tasks in document analysis, such as page frame

detection, text area detection, etc.

Grayscale Images To test layout analysis directly on

grayscale images, we generated simulated photographic im-

ages using a combination of Gaussian filtering, addition

of Gaussian noise, geometric distortion simulating a ruled

surface, and raytracing using a simple lighting model com-

bining a point source and background light. Results were

qualitatively similar to those obtained from binary images,

with low pixel error rates for the segmentation output. An

example is shown in Figure 5. This suggests that the method

can be applied directly to photographic images, an area that

we plan on exploring further.

Other Segmentation Tasks The approach to page layout

analysis described above was based on locating text lines

directly in the original document image, performing text/im-

age discrimination and border noise removal in the same

step. However, by choosing different combinations of image

738738738738738738

Input Target Mask Function

framed centerlines lines Text line detector, weak text/image segmenter.

framed centerlines none Text line detector and strong text/image segmenter.

unframed centerlines none Border noise removal, text line detector, and strong text/image segmenter.

photographic centerlines none Photographic text line detector and strong text/image segmenter.

framed text regions none Text/image segmenter.

unframed text regions none Border noise removal and text/image segmenter.

unframed framed none Border noise removal.

unframed unframed - framed none Border noise detection.

Fig. 7. Different combinations of input images, output images, and masks for training result in different functional blocks for document analysis. The
table shows combinations that have shown to be feasible and that are useful for different applications. Note that text/image segmentation includes text/math
segmentation.

Fig. 8. Other layout analysis tasks solved by deep segmenters. From left to right: (a) raw input image, (b) a model trained for combined text area and
page frame detection, (c) a model trained for text area detection only, (d) a model trained for page frame detection only, (e) a model trained for boundary
noise detection. Note that the figure on the left contains a number of common problems in layout analysis: massive boundary noise, text on facing pages,
line drawings containing text, and mathematical formulas. The text/non-text discrimination networks successfully detect the actual text regions, excluding
text in figures, formulas, and on facing pages. The page frame and boundary noise detectors successfully detect their respective targets.

preprocessing, construction of training targets, and weight

masking during training, we can easily perform a number

of other common layout analysis tasks, such as page frame

detection, text area detection, border noise removal, etc.

Combinations of inputs, targets, and masks, and their cor-

responding functions are shown in Figure 7. Representative

results of training with such image/target/mask combinations

are shown in Figure 8.

V. DISCUSSION

The paper has described a simple layout analysis system

that reduces the problem of layout analysis to learning an

image-to-image transformations using a combination of deep

convolutional networks and MDLSTM networks, followed

by a simple assignment of connected components to the

thresholded output of the network. Except for the usual deep

learning hyperparameters (number of layers, learning rate,

depth), there are no document analysis related parameters or

thresholds. Furthermore, the method requires no document

cleanup and can deal with noise, boundary noise; it can

even operate on grayscale inputs with variable illumination.

An evaluation against a widely used open source system

shows the system to have comparable performance even

when trained on a fairly small (by deep learning standards)

dataset.

Preliminary observations suggest that the same architec-

ture also works for other layout analysis tasks, like image

detection, table detection, line drawing detection, frame and

box detection, etc. Performance is likely going to improve

significantly with larger training sets. In particular, for global

page properties, such as column structure, placement of

images, and page frames, the effective number of training

samples is only 1600 instances. In contrast, for the local

detection and localization of text lines, the training set

effective represents about 100000 “training samples”, in the

form of individual text lines.

The availability of a fully trainable layout analysis engine

with very simple training data requirements (only text lines

need to be marked) opens up possibilities for rapid improve-

ments in layout analysis performance. Synthetic training

data can be generated quite well for OCR applications,

using type setting systems, automated cut-and-paste, and

image degradation models. A synthetic dataset often will

give sufficiently low error rates for many documents, but

markup of additional documents is easy, since the deep

segmenter can be run on new datasets and usually only

small amounts of corrections (breaking up lines, connecting

lines, erasing lines) are necessary and are intuitive and easy

even for non-experts to carry out. In addition, given that

robust, low error rate text line recognizers are now available

as well, self-supervised training and improvements become

possible. For example, determining whether a detect text line

is true or false is possible by running the text line through

739739739739739739

the OCR engine and testing the output against a language

model. Language models can also help with reading order

determination even in the absence of ground truth.

The ability of the deep segmentation algorithm to run

well on noisy grayscale inputs with variable illumination also

makes it attractive for camera-based document capture and

facilitates the use of text lines for reliable rectification and

dewarping of such documents.

The deep segmenter described in this paper will be re-

leased in open source form at www.ocropus.org, in

hopes that it will enable people to develop layout analysis

systems for other languages, scripts, and document types

quickly.

REFERENCES

[1] Henry S Baird, Susan E Jones, and Steven J Fortune.

“Image segmentation by shape-directed covers”. In:

Pattern Recognition, 1990. Proceedings., 10th Inter-
national Conference on. Vol. 1. IEEE. 1990, pp. 820–

825.

[2] Thomas M Breuel. “The OCRopus open source OCR

system”. In: Electronic Imaging 2008. International

Society for Optics and Photonics. 2008, 68150F–

68150F.

[3] Thomas M Breuel. “Two geometric algorithms for lay-

out analysis”. In: International workshop on document
analysis systems. Springer. 2002, pp. 188–199.

[4] Thomas M Breuel et al. “High-performance OCR for

printed English and Fraktur using LSTM networks”.

In: Document Analysis and Recognition (ICDAR),
2013 12th International Conference on. IEEE. 2013,

pp. 683–687.

[5] Syed Saqib Bukhari, Faisal Shafait, and Thomas

M Breuel. “Towards generic text-line extraction”.

In: Document Analysis and Recognition (ICDAR),
2013 12th International Conference on. IEEE. 2013,

pp. 748–752.

[6] Wonmin Byeon et al. “Scene labeling with lstm

recurrent neural networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 3547–3555.

[7] Kamran Etemad, David Doermann, and Rama Chel-

lappa. “Multiscale segmentation of unstructured docu-

ment pages using soft decision integration”. In: IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence 19.1 (1997), pp. 92–96.

[8] Alex Graves and Jürgen Schmidhuber. “Offline hand-

writing recognition with multidimensional recurrent

neural networks”. In: Advances in neural information
processing systems. 2009, pp. 545–552.

[9] Jaekyu Ha, Robert M Haralick, and Ihsin T Phillips.

“Recursive XY cut using bounding boxes of connected

components”. In: Document Analysis and Recognition,
1995., Proceedings of the Third International Confer-
ence on. Vol. 2. IEEE. 1995, pp. 952–955.

[10] Robert M Haralick. “Document image understanding:

Geometric and logical layout”. In: CVPR. Vol. 94.

1994, pp. 385–390.

[11] Jianying Hu, Ramanujan Kashi, and Gordon Wilfong.

“Document classification using layout analysis”. In:

Database and Expert Systems Applications, 1999.
Proceedings. Tenth International Workshop on. IEEE.

1999, pp. 556–560.

[12] Max Jaderberg et al. “Reading text in the wild

with convolutional neural networks”. In: International
Journal of Computer Vision 116.1 (2016), pp. 1–20.

[13] Jonathan Long, Evan Shelhamer, and Trevor Dar-

rell. “Fully convolutional networks for semantic seg-

mentation”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015,

pp. 3431–3440.

[14] Simone Marinai, Marco Gori, and Giovanni Soda.

“Artificial neural networks for document analysis and

recognition”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 27.1 (2005), pp. 23–35.

[15] Lawrence O’Gorman. “The document spectrum for

page layout analysis”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 15.11 (1993),

pp. 1162–1173.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

“U-net: Convolutional networks for biomedical image

segmentation”. In: International Conference on Med-
ical Image Computing and Computer-Assisted Inter-
vention. Springer. 2015, pp. 234–241.

[17] Olga Russakovsky et al. “Imagenet large scale visual

recognition challenge”. In: International Journal of
Computer Vision 115.3 (2015), pp. 211–252.

[18] Faisal Shafait, Daniel Keysers, and Thomas M Breuel.

“Pixel-accurate representation and evaluation of page

segmentation in document images”. In: Pattern Recog-
nition, 2006. ICPR 2006. 18th International Confer-
ence on. Vol. 1. IEEE, pp. 872–875.

[19] Raymond W Smith. “Hybrid page layout analysis via

tab-stop detection”. In: Document Analysis and Recog-
nition, 2009. ICDAR’09. 10th International Confer-
ence on. IEEE. 2009, pp. 241–245.

740740740740740740

