-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy patht2.py
401 lines (337 loc) · 12.1 KB
/
t2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# Author: Iurii Katser
import os
from math import sqrt
import numpy as np
import scipy.stats as SS
from matplotlib import pyplot as plt
from numpy import linalg as LA
from pandas import DataFrame
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
class T2:
"""Calculation of the Hotelling's 1-dimensional T-squared
statistic or T-squared statistic+Q-statistic based on PCA for
anomaly detection in multivariate data.
Based on the following papers:
[1] - Q-statistic and T2-statistic PCA-based measures for damage
assessment in structures / LE Mujica, J. Rodellar, A. Ferna ́ndez,
A. Gu ̈emes // Structural Health Monitoring: An International
Journal. — 2010. — nov. — Vol. 10, no. 5. — Pp. 539–553.
[2] - Zhao Chunhui, Gao Furong. Online fault prognosis with
relative deviation analysis and vector autoregressive modeling //
Chemical Engineering Science. — 2015. — dec. — Vol. 138. — Pp.
531–543.
[3] - Li Wei, Peng Minjun, Wang Qingzhong. False alarm reducing in
PCA method for sensor fault detection in a nuclear power plant //
Annals of Nuclear Energy. — 2018. — aug. — Vol. 118. — Pp. 131–139.
Parameters
----------
scaling : boolean, default = False
If True StandartScaler is used in the pipeline.
If False no scaling procedures are used.
using_pca : boolean, default = True
If True T2+Q based on PCA is used as anomaly detection method.
If False T2 without PCA is used as anomaly detection method.
explained_variance : object, default = 0.85
Proportion of the explained variance for principal components
selection. Relevant only if using_pca=True.
p_value : object, default = 0.999
P value for upper control limits selection. Shows the proportion
of the number of points in train set perceived as normal.
Examples
--------
T2+Q based on PCA:
from ControlCharts import T2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(100, 4), columns=list('ABCD'))
t2 = T2()
t2.fit(df.iloc[:20])
t2.predict(df)
T2 without PCA:
from ControlCharts import T2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(100, 4), columns=list('ABCD'))
t2 = T2(using_pca=False)
t2.fit(df.iloc[:20])
t2.predict(df)
More examples at:
https://github.com/YKatser/control-charts/tree/main/examples
"""
def __init__(
self,
scaling=False,
using_pca=True,
explained_variance=0.85,
p_value=0.999,
):
self.scaling = scaling
self.using_pca = using_pca
self.explained_variance = explained_variance
self.p_value = p_value
# T2 and Q statistics calculations
def _t2_calculation(self, x):
t2 = []
for i in range(len(x)):
t2.append(x[i] @ self.inv_cov @ x[i].T)
return t2
def _q_calculation(self, x):
q = []
for i in range(len(x)):
q.append(x[i] @ self.transform_rc @ x[i].T)
return q
# CALCULATING UPPER CONTROL LIMITS
def _t2_ucl(self, x):
if self.using_pca:
m = self.n_components
else:
m = x.shape[1]
n = len(x)
linspace = np.linspace(0, 15, 10000)
c_alpha = linspace[SS.f.cdf(linspace, m, n - m) < self.p_value][-1]
# koef = m * (n-1) / (n-m)
koef = m * (n - 1) * (n + 1) / (n * (n - m))
self.t2_ucl = koef * c_alpha
def _q_ucl(self, x):
w, v = LA.eig(np.cov(x.T))
sum_ = 0
for i in range(self.n_components, len(w)):
sum_ += w[i]
tetta = []
for i in [1, 2, 3]:
tetta.append(sum_**i)
h0 = 1 - 2 * tetta[0] * tetta[2] / (3 * tetta[1] ** 2)
linspace = np.linspace(0, 15, 10000)
c_alpha = linspace[SS.norm.cdf(linspace) < self.p_value][-1]
self.q_ucl = tetta[0] * (
1
+ (c_alpha * h0 * sqrt(2 * tetta[1]) / tetta[0])
+ tetta[1] * h0 * (h0 - 1) / tetta[0] ** 2
) ** (1 / h0)
# applying pca
def _pca_applying(self, x):
self.pca = PCA(n_components=self.explained_variance).fit(x)
self.n_components = self.pca.n_components_
self._EV = self.pca.components_.T
return self.pca.transform(x)
# PLOTTING AND SAVING RESULTS
def plot_t2(self, t2=None, t2_ucl=None, save_fig=False, fig_name="T2"):
"""Plotting results of T2-statistic calculation with matplotlib
Parameters
----------
t2 : pandas.DataFrame(), default = None
Results of T2-statistic calculation.
t2_ucl : float or int, default = None
Upper control limit for T2.
save_fig : boolean, default = False
If True there will be saved T2 chart as .png to the
current folder.
fig_name : str, default = 'T2'
Name of the saved figure.
Returns
-------
self : object.
"""
if t2 is None:
t2 = self.t2
if t2_ucl is None:
t2_ucl = self.t2_ucl
plt.figure(figsize=(12, 4))
plt.plot(t2, label="$T^2$-statistic")
# for i in self.final_list:
# plt.axvspan(i[0], i[1], facecolor='green', alpha=0.2, zorder=0,
# label='Train set')
plt.grid(True)
plt.axhline(t2_ucl, zorder=10, color="r", label="UCL")
plt.ylim(0, 3 * max(t2.min().values, t2_ucl))
plt.xlim(t2.index.values[0], t2.index.values[-1])
plt.title("$T^2$-statistic chart")
plt.xlabel("Time")
plt.ylabel("$T^2$-statistic value")
plt.legend(["$T^2$-statistic", "UCL", "Train set"])
plt.tight_layout()
if save_fig:
self._save(name=fig_name)
def plot_q(self, q=None, q_ucl=None, save_fig=False, fig_name="Q"):
"""Plotting results of Q-statistic calculation with matplotlib
Parameters
----------
q : pandas.DataFrame(), default = None
Results of Q-statistic calculation.
q_ucl : float or int, default = None
Upper control limit for Q.
save_fig : boolean, default = False
If True there will be saved Q chart as .png to the
current folder.
fig_name : str, default = 'Q'
Name of the saved figure.
Returns
-------
self : object.
"""
if q is None:
q = self.q
if q_ucl is None:
q_ucl = self.q_ucl
plt.figure(figsize=(12, 4))
plt.plot(q, label="$Q$-statistic")
# for i in self.final_list:
# plt.axvspan(i[0], i[1], facecolor='green', alpha=0.2, zorder=0,
# label='Train set')
plt.grid(True)
plt.axhline(q_ucl, zorder=10, color="r", label="UCL")
plt.ylim(0, 3 * max(q.min().values, q_ucl))
plt.xlim(q.index.values[0], q.index.values[-1])
plt.title("$Q$-statistic chart")
plt.xlabel("Time")
plt.ylabel("$Q$-statistic value")
plt.legend(["$Q$-statistic", "UCL", "Train set"])
plt.tight_layout()
if save_fig:
self._save(name=fig_name)
@staticmethod
def _save(name="", fmt="png"):
pwd = os.getcwd()
iPath = pwd + "/pictures/"
if not os.path.exists(iPath):
os.mkdir(iPath)
os.chdir(iPath)
plt.savefig(f"{name}.{fmt}", fmt="png", dpi=150, bbox_inches="tight")
os.chdir(pwd)
def fit(self, x):
"""Computation of the inversed covariance matrix, matrix of
transformation to the residual space (in case of
using_pca=True) and standart scaler fitting (in case of using
scaling=True).
Parameters
----------
x : pandas.DataFrame()
Training set.
Returns
-------
self : object.
"""
x = x.copy()
# removing constant columns
initial_cols_number = len(x.columns)
x = x.loc[:, (x != x.iloc[0]).any()]
self._feature_names_in = x.columns
if initial_cols_number > len(x.columns):
print("Constant columns removed")
if self.scaling:
# fitting PCA and calculation of scaler, EV
self.scaler = StandardScaler()
self.scaler.fit(x)
x_ = self.scaler.transform(x)
else:
x_ = x.values
if self.using_pca:
x_pc = self._pca_applying(x_)
else:
self.n_components = x.shape[1]
if self.n_components == x.shape[1]:
# preparing inv_cov for T2
self.inv_cov = LA.inv(np.cov(x_.T))
# calculating T2_ucl
self._t2_ucl(x_)
if self.using_pca:
print("""Number of principal components is equal to dataset \
shape. Q-statistics is unavailable.""")
else:
# preparing inv_cov for T2 (principal space)
self.inv_cov = LA.inv(np.cov(x_pc.T))
# preparing transform matrix for Q (to residual space)
self.transform_rc = np.eye(len(self._EV)) - np.dot(
self._EV, self._EV.T
)
# calculating t2_ucl and q_ucl
self._t2_ucl(x_)
self._q_ucl(x_)
# calculating train indices
# indices = x.index.tolist()
# diff = x.index.to_series().diff()
# list_of_ind = diff[diff > diff.mean() + 3 * diff.std()].index.tolist()
def predict(
self,
x,
plot_fig=True,
save_fig=False,
fig_name=["T2", "Q"],
window_size=1,
):
"""Computation of T2-statistic or T2-statistic+Q-statistic for
the test dataset.
Parameters
----------
x : pandas.DataFrame()
Testing dataset.
plot_fig : boolean, default = True
If True there will be plotted T2-statistics or
T2-statistics+Q-statistics chart.
save_fig : boolean, default = False
If True there will be saved T2 and Q charts as .png to the
current folder.
fig_name : list of one or two str, default = ['T2','Q']
Names of the saved figures.
window_size : int, default = 1
Size of the window for median filter as a postprocessing.
Returns
-------
self : object
Plotting and saving T2 or T2+Q charts. To get DataFrames
with T2 or Q values call self.t2 or self.q.
"""
x = x.copy()
x = x.loc[:, self._feature_names_in]
if self.scaling:
x_ = self.scaler.transform(x)
else:
x_ = x.values
if self.n_components != x.shape[1]:
# calculating T2
self.t2 = (
DataFrame(
self._t2_calculation(self.pca.transform(x_)),
index=x.index,
columns=["T2"],
)
.rolling(window_size)
.median()
)
# calculating Q
self.q = (
DataFrame(
self._q_calculation(x_), index=x.index, columns=["Q"]
)
.rolling(window_size)
.median()
)
# plotting
if plot_fig:
self.plot_t2(
t2=self.t2,
t2_ucl=self.t2_ucl,
save_fig=save_fig,
fig_name=fig_name[0],
)
self.plot_q(
q=self.q,
q_ucl=self.q_ucl,
save_fig=save_fig,
fig_name=fig_name[1],
)
else:
# calculating T2
self.t2 = (
DataFrame(
self._t2_calculation(x_), index=x.index, columns=["T2"]
)
.rolling(window_size)
.median()
)
# plotting
if plot_fig:
self.plot_t2(self.t2)
if save_fig:
self._save(name=fig_name[0])