-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
72 lines (56 loc) · 2.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os.path as osp
from argparse import ArgumentParser
from mmcv import Config
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader
from datasets import build_dataset
from models import MODELS
def parse_args():
parser = ArgumentParser(description='Training with DDP.')
parser.add_argument('config',
type=str)
parser.add_argument('gpus',
type=int)
parser.add_argument('--work_dir',
type=str,
default='checkpoints')
parser.add_argument('--seed',
type=int,
default=1024)
args = parser.parse_args()
return args
def main():
# parse args
args = parse_args()
# parse cfg
cfg = Config.fromfile(osp.join(f'configs/{args.config}.yaml'))
# show information
print(f'Now training with {args.config}...')
# configure seed
seed_everything(args.seed)
# prepare data loader
dataset = build_dataset(cfg.dataset)
loader = DataLoader(dataset, cfg.imgs_per_gpu, shuffle=True, num_workers=cfg.workers_per_gpu, drop_last=True)
if cfg.model.name == 'rnw':
cfg.data_link = dataset
# define model
model = MODELS.build(name=cfg.model.name, option=cfg)
# define trainer
work_dir = osp.join(args.work_dir, args.config)
# save checkpoint every 'cfg.checkpoint_epoch_interval' epochs
checkpoint_callback = ModelCheckpoint(dirpath=work_dir,
save_weights_only=True,
save_top_k=-1,
filename='checkpoint_{epoch}',
every_n_epochs=cfg.checkpoint_epoch_interval)
trainer = Trainer(accelerator='ddp',
default_root_dir=work_dir,
gpus=args.gpus,
num_nodes=1,
max_epochs=cfg.total_epochs,
callbacks=[checkpoint_callback])
# training
trainer.fit(model, loader)
if __name__ == '__main__':
main()