forked from muccc/iridium-toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
beam-plotter.py
executable file
·220 lines (190 loc) · 6.63 KB
/
beam-plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
# vim: set ts=4 sw=4 tw=0 et pm=:
# proper input format:
# iridium-parser.py --filter IridiumRAMessage --format ra_sat,ra_cell,ra_pos_x,ra_pos_y,ra_pos_z,globalns
from math import atan2,sqrt,pi,sin,cos
import fileinput
import getopt
import sys
import matplotlib.pyplot as plt
import numpy as np
options, remainder = getopt.getopt(sys.argv[1:], 'vd:s:', [
'verbose',
'direction=',
'sat='
])
debugpos=False
verbose=False
satno=None
direction=None
# Inclination in deg
inc0=84.0
for opt, arg in options:
if opt in ('-v', '--verbose'):
verbose = True
elif opt in ('-s','--sat'):
satno=int(arg)
elif opt in ('-d','--direction'):
try:
direction=int(arg)
except ValueError:
if arg=="n":
direction=1
elif arg=="s":
direction=-1
else:
raise
# Preallocate arrays
xs=[[] for y in range(50)]
ys=[[] for y in range(50)]
seen=[0]* 255
north=[0]* 255
pos=[None]* 255
for line in fileinput.input(remainder):
sat,cell,x,y,z,nstime=line.split(None,6)
sat=int(sat)
if satno and sat!=satno:
continue
cell=int(cell)
# Convert position to km
x=int(x)*4
y=int(y)*4
z=int(z)*4
lat = atan2(z,sqrt(x**2+y**2))*180/pi
lon = atan2(y,x)*180/pi
alt = sqrt(x**2+y**2+z**2)
gtime=float(nstime)/10e9
if debugpos:
print("")
print("sat:",sat,"cell:",cell,"x/y/z",x,y,z,"alt:",alt)
if alt>7000:
if debugpos: print("High flyer")
if seen[sat]>0:
if debugpos: print("- timedelta",gtime-seen[sat])
if gtime-seen[sat] < 10:
(ox,oy,oz)=pos[sat]
if debugpos: print("- posdelta",x-ox,y-oy,z-oz)
if z-oz==0:
continue
if(z-oz>0):
north[sat]=1
else:
north[sat]=-1
else:
north[sat]=0
if debugpos: print("- north:",north[sat])
seen[sat]=gtime
pos[sat]=(x,y,z)
else:
if debugpos: print("Low flyer")
if not seen[sat]:
if debugpos: print("# Sat unknown")
continue
td=gtime-seen[sat]
if debugpos: print("- timedelta:",td)
if debugpos: print("- north:",north[sat])
if td > 10:
if debugpos: print("# Too old")
north[sat]=0
continue
if direction is not None:
if direction!=north[sat]:
if debugpos: print("# ignore direction")
continue
if north[sat] == 0:
if debugpos: print("# Unknown direction")
continue
(ox,oy,oz)=pos[sat]
lat = atan2(oz,sqrt(ox**2+oy**2))
lon = atan2(oy,ox)
alt = sqrt(ox**2+oy**2+oz**2)*4
inc=-(90-inc0)/180*pi
if (north[sat]<0):
inc=-(180-(90-inc0))/180*pi
if debugpos:
print("- lat/lon/alt: %+06.2f/%+07.2f %+05d"%(lat*180/pi,lon*180/pi,alt))
# rotate lon to 0 (around z)
x1=ox*cos(-lon)-oy*sin(-lon)
y1=ox*sin(-lon)+oy*cos(-lon)
z1=oz
# rotate lat to 0(equator) (around y)
x2=x1*cos(-lat)-z1*sin(-lat)
y2=y1
z2=x1*sin(-lat)+z1*cos(-lat)
# rotate inclination to north (around x) [inclination]
x3=x2
y3=y2*cos(-inc)-z2*sin(-inc)
z3=y2*sin(-inc)+z2*cos(-inc)
print("- sat-ox/oy/oz: %7.1f %7.1f %7.1f"%(ox,oy,oz))
print("- sat-x1/y1/z1: %7.1f %7.1f %7.1f"%(x1,y1,z1))
print("- sat-x2/y2/z2: %7.1f %7.1f %7.1f"%(x2,y2,z2))
print("- sat-x3/y3/z3: %7.1f %7.1f %7.1f"%(x3,y3,z3))
print("")
# rotate by lon to 0 (around z)
x1=x*cos(-lon)-y*sin(-lon)
y1=x*sin(-lon)+y*cos(-lon)
z1=z
# rotate by lat to equator (around y)
x2=x1*cos(-lat)-z1*sin(-lat)
y2=y1
z2=x1*sin(-lat)+z1*cos(-lat)
# rotate inclination to north (around x) [inclination]
x3=x2
y3=y2*cos(-inc)-z2*sin(-inc)
z3=y2*sin(-inc)+z2*cos(-inc)
if debugpos:
print("- POS-ox/oy/oz: %7.1f %7.1f %7.1f"%(ox,oy,oz))
print("- POS-x1/y1/z1: %7.1f %7.1f %7.1f"%(x1,y1,z1))
print("- POS-x2/y2/z2: %7.1f %7.1f %7.1f"%(x2,y2,z2))
print("- POS-x3/y3/z3: %7.1f %7.1f %7.1f"%(x3,y3,z3))
xs[cell].append(y3)
ys[cell].append(z3)
if verbose: print("------------ PLOT --------------")
colormap = plt.cm.gist_ncar
colorst = [colormap(i) for i in np.linspace(0, 0.9,len(xs))]
for cnt in range(len(xs)):
if len(xs[cnt])==0:
continue
# Calculate center of mass for circle
if verbose: print("Cell: ",cnt)
if verbose: print("- Points: ",len(xs[cnt]))
xc=sum(xs[cnt])/len(xs[cnt])
yc=sum(ys[cnt])/len(ys[cnt])
if verbose: print("- Center: ",xc,yc)
md=0
for t in range(len(xs[cnt])):
d=((xs[cnt][t]-xc)**2+(ys[cnt][t]-yc)**2)**0.5
if md<d:
md=d
if verbose: print("- Dist: ",md)
ax=plt.gcf().gca()
ax.add_artist(plt.Circle((xc, yc), md+10, edgecolor=colorst[cnt], facecolor="none"))
p=plt.scatter(x=xs[cnt], y=ys[cnt], color=colorst[cnt], edgecolor="none",label="%02d (%d)"%(cnt,len(xs[cnt])) )
plt.annotate(str(cnt),(xc+10+md,yc+10+md))
#plt.scatter(x=0,y=0,c='black')
plt.xlabel('Y/km')
plt.ylabel('Z/km',labelpad=-30)
fig = plt.gcf()
ax = fig.gca()
ax.legend(fontsize='small')
ax.spines['right'].set_position('zero')
ax.spines['top'].set_position('zero')
ax.set_aspect('equal', 'datalim')
#plt.colorbar(p)
if satno:
title='Beam Pattern for Sat %d'%satno
else:
title='Beam Pattern plot'
if direction is not None:
if direction == 1:
title=title+' (North)'
elif direction == -1:
title=title+' (South)'
else:
raise
plt.title(title)
fig.canvas.set_window_title(title)
# Make plot area larger
fig.tight_layout()
plt.subplots_adjust(left=0.05,bottom=0.05, top=0.95)
plt.show()