-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathmake_anchor_list.py
executable file
·239 lines (192 loc) · 7.83 KB
/
make_anchor_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
from tools.utils import Helper, INFO, ERROR, NOTE
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
import sys
import argparse
import tensorflow as tf
def tf_fake_iou(X: tf.Tensor, centroids: tf.Tensor) -> tf.Tensor:
""" calc the fake iou between x and centroids
Parameters
----------
X : tf.Tensor
dataset array, shape = [?,2]
centroids : tf.Tensor
centroids,shape = [?,2]
Returns
-------
tf.Tensor
iou score, shape = [?,1]
"""
a_maxes = X / 2.
a_mins = -a_maxes
b_maxes = centroids / 2.
b_mins = -b_maxes
iner_mins = tf.maximum(a_mins, b_mins)
iner_maxes = tf.minimum(a_maxes, b_maxes)
iner_wh = tf.maximum(iner_maxes - iner_mins, 0.)
iner_area = iner_wh[..., 0] * iner_wh[..., 1]
s1 = X[..., 0] * X[..., 1]
s2 = centroids[..., 0] * centroids[..., 1]
return 1 - iner_area / (s1 + s2 - iner_area)
def findClosestCentroids(X: tf.Tensor, centroids: tf.Tensor) -> tf.Tensor:
""" find close centroids
Parameters
----------
X : tf.Tensor
dataset array, shape = [?,2]
centroids : tf.Tensor
centroids array, shape = [?,2]
Returns
-------
tf.Tensor
idx, shape = [?,]
"""
idx = tf.argmin(tf_fake_iou(X, centroids), axis=1)
return idx
def computeCentroids(X: np.ndarray, idx: np.ndarray, k: int) -> np.ndarray:
""" use idx calc the new centroids
Parameters
----------
X : np.ndarray
shape = [?,2]
idx : np.ndarray
shape = [?,]
k : int
the centroids num
Returns
-------
np.ndarray
new centroids
"""
m, n = np.shape(X)
centroids = np.zeros((k, n))
for i in range(k):
centroids[i, :] = np.mean(X[np.nonzero(idx == i)[0], :], axis=0)
return centroids
def plotDataPoints(X, idx, K):
plt.scatter(X[:, 0], X[:, 1], c=idx)
def plotProgresskMeans(X, centroids_history, idx, K, i):
plotDataPoints(X, idx, K)
# Plot the centroids as black x's
for i in range(len(centroids_history) - 1):
plt.plot(centroids_history[i][:, 0], centroids_history[i][:, 1], 'rx')
plt.plot(centroids_history[i + 1][:, 0], centroids_history[i + 1][:, 1], 'bx')
# Plot the history of the centroids with lines
for j in range(K):
# matplotlib can't draw line like [x1,y1] to [x2,y2]
# it have to write like [x1,x2] to [y1,y2] f**k!
plt.plot(np.r_[centroids_history[i + 1][j, 0], centroids_history[i][j, 0]],
np.r_[centroids_history[i + 1][j, 1], centroids_history[i][j, 1]], 'k--')
# Title
plt.title('Iteration number {}'.format(i + 1))
def tile_x(x: np.ndarray, k: int):
# tile the array
x = x[:, np.newaxis, :]
x = np.tile(x, (1, k, 1))
return x
def tile_c(initial_centroids: np.ndarray, m: int):
c = initial_centroids[np.newaxis, :, :]
c = np.tile(c, (m, 1, 1))
return c
def build_kmeans_graph(new_x: np.ndarray, new_c: np.ndarray):
""" build calc kmeans graph
Parameters
----------
new_x : np.ndarray
shape= [?,5,2]
new_c : np.ndarray
shape = [?,5,2]
Returns
-------
tuple
in_x : x placeholder
in_c : c placeholder
out_idx : output idx tensor, shape [?,]
"""
in_x = tf.placeholder(tf.float64, shape=np.shape(new_x), name='in_x')
in_c = tf.placeholder(tf.float64, shape=np.shape(new_c), name='in_c')
out_idx = findClosestCentroids(in_x, in_c)
return in_x, in_c, out_idx
def runkMeans(X: np.ndarray, initial_centroids: np.ndarray, max_iters: int,
plot_progress=False):
# init value
m, _ = X.shape
k, _ = initial_centroids.shape
# history list
centroid_history = []
# save history
centroids = initial_centroids.copy()
centroid_history.append(centroids.copy())
# build tensorflow graph
new_x, new_c = tile_x(X, k), tile_c(initial_centroids, m)
assert new_x.shape == new_c.shape
in_x, in_c, idx = build_kmeans_graph(new_x, new_c)
""" run kmeans """
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
for i in range(max_iters):
idx_ = sess.run(idx, feed_dict={in_x: new_x, in_c: new_c})
new_centrois = computeCentroids(X, idx_, k)
centroid_history.append(new_centrois.copy())
new_c = tile_c(new_centrois, m)
sess.close()
if plot_progress:
plt.figure()
plotProgresskMeans(X, centroid_history, idx_, k, max_iters)
plt.show()
return new_centrois, idx_
def main(train_set: str, max_iters: int, in_hw: tuple, out_hw: tuple,
anchor_num: int, is_random: bool, is_plot: bool, low: list, high: list):
X = np.load(f'data/{train_set}_img_ann.npy', allow_pickle=True)
in_wh = np.array(in_hw[::-1])
low = np.array(low)
high = np.array(high)
# NOTE correct boxes
for i in range(len(X)):
# X[i, 1], X[i, 2]
img_wh = X[i, 2][::-1]
""" calculate the affine transform factor """
scale = in_wh / img_wh # NOTE affine tranform sacle is [w,h]
scale[:] = np.min(scale)
# NOTE translation is [w offset,h offset]
translation = ((in_wh - img_wh * scale) / 2).astype(int)
""" calculate the box transform matrix """
X[i, 1][:, 1:3] = (X[i, 1][:, 1:3] * img_wh * scale + translation) / in_wh
X[i, 1][:, 3:5] = (X[i, 1][:, 3:5] * img_wh * scale) / in_wh
x = np.vstack(X[:, 1])
x = x[:, 3:]
layers = len(out_hw) // 2
if is_random == 'True':
initial_centroids = np.hstack((np.random.uniform(low[0], high[0], (layers * anchor_num, 1)),
np.random.uniform(low[1], high[1], (layers * anchor_num, 1))))
else:
initial_centroids = np.vstack((np.linspace(0.05, 0.3, num=layers * anchor_num), np.linspace(0.05, 0.5, num=layers * anchor_num)))
initial_centroids = initial_centroids.T
centroids, idx = runkMeans(x, initial_centroids, 10, is_plot)
# NOTE : sort by descending , bigger value for layer 0 .
centroids = np.array(sorted(centroids, key=lambda x: (-x[0])))
centroids = np.reshape(centroids, (layers, anchor_num, 2))
for l in range(layers):
centroids[l] = centroids[l] # grid_wh[l] # NOTE centroids是相对于全局的0-1
if np.any(np.isnan(centroids)):
print(ERROR, 'Result have NaN value please Rerun!')
else:
print(NOTE, f'Now anchors are :\n{centroids}')
np.save(f'data/{train_set}_anchor.npy', centroids)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('train_set', type=str, help=NOTE + 'this is train dataset name , the output *.npy file will be {train_set}_anchors.list')
parser.add_argument('--max_iters', type=int, help='kmeans max iters', default=10)
parser.add_argument('--is_random', type=str, help='wether random generate the center', choices=['True', 'False'], default='True')
parser.add_argument('--is_plot', type=str, help='wether show the figure', choices=['True', 'False'], default='True')
parser.add_argument('--in_hw', type=int, help='net work input image size', default=(224, 320), nargs='+')
parser.add_argument('--out_hw', type=int, help='net work output image size', default=(7, 10, 14, 20), nargs='+')
parser.add_argument('--low', type=float, help='Lower bound of random anchor, (x,y)', default=(0.0, 0.0), nargs='+')
parser.add_argument('--high', type=float, help='Upper bound of random anchor, (x,y)', default=(1.0, 1.0), nargs='+')
parser.add_argument('--anchor_num', type=int, help='single layer anchor nums', default=3)
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
main(args.train_set, args.max_iters, args.in_hw, args.out_hw, args.anchor_num, args.is_random, args.is_plot, args.low, args.high)