-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHealth_notebook.jl
1074 lines (848 loc) · 36.8 KB
/
Health_notebook.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.18.4
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 0189cd8a-f034-4c20-8571-14fb5da873e7
using PlutoUI, DataFrames, CSV, Query, VegaLite, Dates, HTTP, Statistics
# ╔═╡ 8268035c-aaf7-4811-b858-20161b57a0b9
md"## Visualizing Samsung Health App Data"
# ╔═╡ c5aa61e2-06b9-4bb6-819f-b0043d5bf932
md" > **Demo notebook for JuliaCon 2022**
>
> **Author: Vikas Negi**
>
> [GitHub - vnegi10](https://github.com/vnegi10)
>
> [LinkedIn] (https://www.linkedin.com/in/negivikas/)
"
# ╔═╡ bb24143d-9a1c-41c9-9328-40e4186dc86b
TableOfContents()
# ╔═╡ f656c150-eeb8-4eb7-8c8f-48f213d14a88
md"
## Introduction
In this notebook, we will analyze my activity data obtained via the Samsung Health app. The data is recorded by sensors present in my: 1) Galaxy S9+ phone - steps, distance (via a pedometer) and (2) Gear S3 Frontier watch - steps, distance, climbed floors, and heart rate (via a photoplethysmogram). Data are available in the form of .csv files, which makes them quite easy to use.
We will read the data directly from my github repository using **CSV.jl**, and store them in the form of DataFrames. For visualization, we will make use of the excellent **VegaLite.jl** package.
"
# ╔═╡ 68a82310-ea56-4c79-937d-fd3f12961617
md"
## Pkg environment
"
# ╔═╡ 2c49defa-0695-4974-8154-9f9688108a51
md"
## Obtaining input data
If you use the Samsung Health app, you can download the activity data by following the instructions as described in this [article](https://towardsdatascience.com/extract-health-data-from-your-samsung-96b8a2e31978). I guess Fitbit and Garmin users can also use a similar strategy.
URL to the files have been added below. They are read directly into a DataFrame. We set **header = 2** so that the second row is used to name the columns in our DataFrame.
"
# ╔═╡ ffacf8a1-0750-48bd-880b-6c42014a7351
begin
# GitHub link
const URL = "https://raw.githubusercontent.com/vnegi10/Health_data_analysis/master/data"
# CSV files from Samsung Health app
files = ["com.samsung.shealth.tracker.pedometer_day_summary.202207021430.csv",
"com.samsung.shealth.tracker.heart_rate.202207021430.csv",
"com.samsung.health.floors_climbed.202207021430.csv"]
# Function to generate url
gen_url(file::String, url::String=URL) = joinpath(url, file)
end
# ╔═╡ 5c1645d7-f51e-4f53-86ff-05b2e60865db
begin
# Function to convert url to DataFrame
url_to_df(url::String) = CSV.File(HTTP.get(url, require_ssl_verification = false).body, header = 2) |> DataFrame
df_pedometer_raw, df_heart_raw, df_floors_raw = [url_to_df(gen_url(file)) for file in files]
end
# ╔═╡ 8a38cbad-5684-4a8e-91fc-b38f787cd5e1
md"
## Exploring the structure of our DataFrame
"
# ╔═╡ 7bc8f218-01c5-4956-a156-82c6d5cb7d5b
df_pedometer_raw
# ╔═╡ bd5ffe99-b7ce-4883-9198-73391a71e695
# Check size of the DataFrame
size(df_pedometer_raw)
# ╔═╡ cc438ad3-da8b-4da6-9ccd-8dc47a098545
# Get column names
names(df_pedometer_raw)
# ╔═╡ 824b9f5f-2b7c-414c-9aea-5a6877732139
# Check various statistics about the DataFrame
describe(df_pedometer_raw)
# ╔═╡ e83af676-3745-49fe-aa9c-e66fc3e2ef28
md"
### Cleaning and organizing data
---
"
# ╔═╡ eb1dc392-eb58-4034-8784-0a8ef79c4ff0
begin
# Create an independent copy
df_pedometer = deepcopy(df_pedometer_raw)
# Set format for the DateTime object
datef = dateformat"y-m-d H:M:S.s"
# Convert create_time column from string into DateTime objects
df_pedometer[!, :create_time] = DateTime.(df_pedometer_raw[!, :create_time], datef)
# Convert distance into km and time into minutes
df_pedometer[!, :distance] = df_pedometer_raw[!, :distance]/1000 # to km
df_pedometer[!, :active_time] = df_pedometer[!, :active_time]/60000 # to minutes
# Remove rows which have type 'missing' in the source_info column, this gets rid of duplicates. @dropna macro comes from Query.jl
df_pedometer = df_pedometer |> @dropna(:source_info) |> DataFrame
# Sort the DataFrame in the order of increasing time
sort!(df_pedometer, :create_time)
end
# ╔═╡ b7dd0336-2dad-4c0c-b934-eb9d235b658d
md"
### Adding some new columns
---
We calculate the cumulative distance and add it to a separate column `cumul_distance`. For later use, it is also handy to classify days as 'weekday' or 'weekend', and add them to a separate `day_type` column. Similarly for `day` and `month` columns.
"
# ╔═╡ 6fa76290-bb8b-4b96-b54f-c68e1c699a4a
# Calculate cumulative distance and add a new column to the existing DataFrame
begin
cumul_distance = Float64[]
day_type, day, month = (String[] for i = 1:3)
year = Int64[]
for i = 1:size(df_pedometer)[1]
push!(cumul_distance, sum(df_pedometer[!, :distance][1:i]))
push!(day, Dates.dayname(df_pedometer[!, :create_time][i]))
push!(month, Dates.monthname(df_pedometer[!, :create_time][i]))
push!(year, Dates.year(df_pedometer[!, :create_time][i]))
if Dates.dayname(df_pedometer[!, :create_time][i]) in ["Saturday", "Sunday"]
push!(day_type, "weekend")
else
push!(day_type, "weekday")
end
end
insertcols!(df_pedometer, 1,
:cumul_distance => cumul_distance,
:day_type => day_type,
:day => day,
:month => month,
:year => year)
end
# ╔═╡ 7b11af41-9d7e-425d-9517-1914165967bd
md"
## Select time range to plot activity data
**Data is available between 05-2018 to 03-2021**
"
# ╔═╡ 15e32715-bfc8-4228-b7f8-9abac314a610
md" **Select start date**"
# ╔═╡ 277c7460-788f-4b93-b1d2-b4d4e4d0a14d
@bind start_date DateField(default = DateTime(2019,1,1))
# ╔═╡ 7f427cfc-e21b-413b-821f-6f0d86954f1c
md" **Select end date**"
# ╔═╡ dc3696c2-479b-4aa9-9552-bd858f475c2b
@bind end_date DateField(default = DateTime(2020,12,31))
# ╔═╡ 0e27122a-f517-458a-a3de-ad4f6a0cbc60
md" DataFrame is filtered based on the time range selected above. **@filter** is a powerful macro provided by the Query.jl package. We filter out rows for which `create_time` lies between `start_date` and `end_date`.
"
# ╔═╡ a5ea4203-08eb-4afd-ab36-564482274ec3
df_pedometer_filter = df_pedometer |>
@filter(_.create_time > start_date && _.create_time < end_date) |> DataFrame
# ╔═╡ c552099a-9025-4297-8825-a4242559122d
md"
### Daily steps
---
Our filtered DataFrame `df_pedometer_filter` can be passed directly to **@vlplot** macro provided by the VegaLite.jl package. Rest of the arguments are specific to the type of plot. Check out the [VegaLite.jl](https://www.queryverse.org/VegaLite.jl/stable/gettingstarted/tutorial/) tutorial.
"
# ╔═╡ 9339dde8-2b00-406c-9fc4-ba34c4d8579c
figure1 = df_pedometer_filter |> @vlplot("mark"={:area, "line" = {"color" = "seagreen"},
"color"={"x1"=1, "y1"=1, "x2"=1, "y2"=0,
"gradient"=:linear, "stops" = [
{"offset"=0, "color"="white"},
{"offset"=1, "color"="green"}]}},
x = {:create_time, "axis" = {"title" = "Time", "labelFontSize" = 12, "titleFontSize" = 14}, "type" = "temporal"},
y = {:step_count, "axis" = {"title" = "Daily steps", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 750, height = 500,
"title" = {"text" = "Daily steps from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16})
# ╔═╡ d850b608-bfb2-4b02-89cb-f2af27417a28
save_fig(filename::String, figure::VegaLite.VLSpec) = save(joinpath("figures",filename), figure)
# ╔═╡ 5dc6a5f9-4ddb-4d57-87b7-df3e23155c56
md" We can plot a histogram to see the distribution of steps between different years. Looking at data for 2020 vs 2019, it is clear that I have done less steps in 2020. This is likely due to the Corona situation.
"
# ╔═╡ 03c531ee-7177-4cfd-811b-ab902212fcdd
md" **Change the number of max bins by dragging the slider below** "
# ╔═╡ d7146451-a459-48ca-878f-c75b874ccd21
@bind bins1 Slider(25:75, default=50, show_value=true)
# ╔═╡ 00712037-2c82-4fd2-9777-e49d313e54fa
figure2 = df_pedometer_filter |>
@vlplot(:bar,
x = {:step_count, "axis" = {"title" = "Number of steps", "labelFontSize" = 12, "titleFontSize" = 14}, "bin" = {"maxbins" = bins1}},
y = {"count()", "axis" = {"title" = "Number of counts", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Step count distribution from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
color = "year:n")
# ╔═╡ beb86d06-2294-482d-9d00-a2c72986915a
save_fig("Daily_steps_hist.png", figure2)
# ╔═╡ 7998fa73-c5f8-4497-8b8f-8c43222773d9
md"
### Monthly breakdown between different years
---
"
# ╔═╡ 41194cce-6f90-4404-827b-a24d3546dff0
df_pedometer_filter |>
@vlplot(:bar,
column = "month:o",
x = {"year:n", "axis" = {"title" = "Year", "labelFontSize" = 12, "titleFontSize" = 14}},
y = {"sum(step_count)", "axis" = {"title" = "Number of steps", "labelFontSize" = 12, "titleFontSize" = 14, "grid" = false}},
"title" = {"text" = "Monthly breakdown of step count from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
color={"year:n", scale={range=["#675193", "#ca8861"]}},
spacing = 10, config={view={stroke=:transparent}, axis={domainWidth=1}})
# ╔═╡ fe15cdda-3128-4a7f-be92-58cad62c5007
md"
### Daily distance
---
Setting the color scale to `:distance` column in our DataFrame, renders the bars with a gradient that is proportional to the size of each data point. Looks quite cool!
"
# ╔═╡ 19a9837e-db8e-4ff4-9f75-1c6f5ad9fc74
figure3 = df_pedometer_filter |>
@vlplot("mark"={:bar, "width" = 3},
x = {:create_time, "axis" = {"title" = "Time", "labelFontSize" = 12, "titleFontSize" = 14}, "type" = "temporal"},
y = {:distance, "axis" = {"title" = "Daily distance [km]", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Daily distance from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
color = :distance)
# ╔═╡ 8f1981a4-f553-4e2c-a070-5d60f2fec611
save_fig("Daily_distance.png", figure3)
# ╔═╡ 4a5c4d8a-1d5d-4458-885a-2658d9328489
md"
### Cumulative distance
---
"
# ╔═╡ 22081464-abb6-4157-98bc-80c361144105
figure4 = df_pedometer_filter |>
@vlplot(:area,
x = {:create_time, "axis" = {"title" = "Time", "labelFontSize" = 12, "titleFontSize" = 14}, "type" = "temporal"},
y = {:cumul_distance, "axis" = {"title" = "Aggregate daily distance [km]", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Cumulative distance from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
)
# ╔═╡ fbb7c18f-82bb-4499-b608-687764ab391d
save_fig("Cumum_distance_2019_2021.png", figure4)
# ╔═╡ 0b0dc862-a8f4-4bc8-b5fd-50e74c221bc5
md"
### Distribution of active time
---
**Change the number of max bins by dragging the slider below**
"
# ╔═╡ cf320c13-2b65-4435-8f39-54d6217a7d1b
@bind bins2 Slider(25:75, default=50, show_value=true)
# ╔═╡ 61f017e1-ea63-4d6d-aedc-25d943871975
figure5 = df_pedometer_filter |>
@vlplot(:bar,
x = {:active_time, "axis" = {"title" = "Measured active time [minutes]", "labelFontSize" = 12, "titleFontSize" = 14}, "bin" = {"maxbins" = bins2}},
y = {"count()", "axis" = {"title" = "Number of counts", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Active time distribution from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
color = :day_type)
# ╔═╡ f50e5792-4be7-4dc0-b5fb-ffc134320405
save_fig("Active_time_daytype_2019_2021.png", figure5)
# ╔═╡ 2389995c-1758-4d91-baf7-d3e0dcf7ce85
figure6 = df_pedometer_filter |>
@vlplot(:bar,
x = {:active_time, "axis" = {"title" = "Measured active time [minutes]", "labelFontSize" = 12, "titleFontSize" = 14}, "bin" = {"maxbins" = bins2}},
y = {"count()", "axis" = {"title" = "Number of counts", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Active time distribution from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
color = :day)
# ╔═╡ 7b6fe3e6-01b2-43b9-80a1-6aa62d90b0ad
md" I appear to be quite active on Wednesdays, that is surprising!"
# ╔═╡ b383c509-4704-406f-92e7-c8bc04210204
save_fig("Active_time_perday_2019_2021.png", figure6)
# ╔═╡ 007192c1-a745-4ced-8af4-c320c8e44181
md"
### Correlation between number of steps and calories
---
As expected, number of steps and total calories consumed have a direct correlation. This 2D histogram scatterplot also shows markers with size proportional to the total number of counts. Fewer data points exist for higher step counts. I should try to be more active this year!
**Move slider to select a year**
"
# ╔═╡ 1bb2cde7-f951-4d33-af50-46bef9a183c1
@bind select_year Slider(2018:2021; default=2019, show_value=true)
# ╔═╡ 3d63542e-5a51-4368-85e5-2e0be17ae991
figure7 = df_pedometer |>
@filter(_.year == select_year) |>
@vlplot(:circle,
x = {:step_count, "axis" = {"title" = "Number of steps", "labelFontSize" = 14, "titleFontSize" = 14}, "bin" = {"maxbins" = 30}},
y = {:calorie, "axis" = {"title" = "Calories", "labelFontSize" = 14, "titleFontSize" = 14 }, "bin" = {"maxbins" = 30}},
width = 850, height = 500,
"title" = {"text" = "2D histogram scatterplot calories vs step count for $(select_year)", "fontSize" = 16},
size = "count()")
# ╔═╡ 75e007d4-8f37-463f-ba9e-03548a771125
save_fig("Step_count_vs_calories_$(select_year).png", figure7)
# ╔═╡ d8a77ace-18e6-4c3f-a56c-0a4bf65c536f
md"
### Heatmap of step count vs active time
---
"
# ╔═╡ 6e043d91-8b33-49e2-ab0c-e5c3cb86fd15
md"
**Move slider to select a year:** $(@bind select_year_2 Slider(2018:2021; default=2019, show_value=true))
"
# ╔═╡ 7353321e-4849-4685-9276-57b8eefa0745
figure8 = df_pedometer |>
@filter(_.year == select_year_2) |>
@vlplot(:rect,
x = {:step_count, "axis" = {"title" = "Number of steps", "labelFontSize" = 14, "titleFontSize" = 14}, "bin" = {"maxbins" = 30}},
y = {:active_time, "axis" = {"title" = "Active time [mins]", "labelFontSize" = 14, "titleFontSize" = 14 }, "bin" = {"maxbins" = 30}},
color = :distance,
config={
"range" = {
heatmap={
scheme="greenblue"
}
},
"view" = {
"stroke" = "transparent"
}
},
width = 850, height = 500,
"title" = {"text" = " Heatmap of step count vs active time for $(select_year_2) seen on the distance [km] scale", "fontSize" = 16},
)
# ╔═╡ f02e1137-25cd-4d9c-bea8-4822beecd4e0
save_fig("Heatmap_$(select_year).png", figure8)
# ╔═╡ c24250e2-5d8f-464a-8c33-48d165242163
md"
## Visualizing heart rate data
"
# ╔═╡ 54e3fa06-f672-404e-bcdd-c414846df0f9
size(df_heart_raw)
# ╔═╡ 2180887e-ff4b-4a22-be86-00c6cd72a285
# Same as before
begin
df_heart = deepcopy(df_heart_raw)
# Rename columns to a shorter and more readable name
rename!(df_heart, Dict(Symbol("com.samsung.health.heart_rate.create_time") => "create_time", Symbol("com.samsung.health.heart_rate.heart_rate") => "heart_rate"))
df_heart[!, :create_time] = DateTime.(df_heart[!, :create_time], datef)
sort!(df_heart, :create_time);
end
# ╔═╡ 612fb369-0149-4090-ac2f-37a4926a1293
df_heart_filter = df_heart |> @filter(_.create_time > start_date && _.create_time < end_date) |> DataFrame
# ╔═╡ b7e5fe84-e455-4b71-aba6-1b5927eed45e
md"
### Scatter plot of heart rate data
---
"
# ╔═╡ f35989fa-903c-4d79-9cbc-59ab4ff9ff2f
figure9 = df_heart_filter |>
@vlplot(:circle,
x = {:create_time, "axis" = {"title" = "Time", "labelFontSize" = 12, "titleFontSize" = 14}, "type" = "temporal"},
y = {:heart_rate, "axis" = {"title" = "Measured heart rate [bpm]", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Heart rate from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16},
size = :heart_rate)
# ╔═╡ fbdd8dca-6c08-445a-9965-76321eafd41f
save_fig("Heart_rate_2019_2021.png", figure9)
# ╔═╡ ce3f3eb8-a7d0-4b05-942a-ec4bf1df5a6f
md"
### Heart rate distribution
---
Heart rate is measured by my watch every 10 minutes. I wear it almost everyday. That means most of the data points are collected while I am sitting (mostly relaxed) at my desk for work. Data appears to be clustered around the resting heart rate range of 60-100 beats per minute (bpm) with a mean around 79 bpm. That's a relief!
**Move slider to select a year**
"
# ╔═╡ 4bf8b146-bf39-4e56-90dc-572003e49f0e
@bind select_year_1 Slider(2018:2021; default=2019, show_value=true)
# ╔═╡ d2789f5e-3642-4a39-9776-60959c553990
begin
df_heart_year = df_heart |> @filter(_.create_time > DateTime(select_year_1) && _.create_time < DateTime(select_year_1 + 1)) |> DataFrame
μ = mean(df_heart_year[!,:heart_rate]) # calculate mean heart rate
figure10 = df_heart_year |> @vlplot(:bar,
x = {:heart_rate, "axis" = {"title" = "Measured heart rate [bpm]", "labelFontSize" = 12, "titleFontSize" = 14}},
y = {"count()", "axis" = {"title" = "Number of counts", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Heart rate distribution for $(select_year_1) with mean = $(round(μ, digits = 2)) bpm", "fontSize" = 16},
color = :heart_rate)
end
# ╔═╡ 30e2f5e2-7ec6-4978-8f7e-eb3a344af155
save_fig("Heart_rate_distribution_2021.png", figure10)
# ╔═╡ d8ad02a1-c0e7-47d7-8814-3d4f994c953c
md"
## Visualizing climbed floors data
"
# ╔═╡ bd47dea3-3ad4-41d0-9104-81cf2bce8ad8
begin
df_floors = deepcopy(df_floors_raw)
df_floors[!, :create_time] = DateTime.(df_floors[!, :create_time], datef)
sort!(df_floors, :create_time)
end
# ╔═╡ ec0fd3dc-a7ae-4331-af9b-2a547441befa
md"
### Number of floors climbed
---
Nothing too exciting here, except for a huge spike in Nov, 2019. I was wearing this watch during a short hike in the city of Nainital, India. An elevation change of 9 feet is recorded as one floor climb. So, 65 floors indicates that I must have climbed 585 feet ~ 178 m during that time. Phew!
"
# ╔═╡ 7167ce6d-1b77-48e6-ad78-a8082b87b8eb
figure11 = df_floors |>
@filter(_.create_time > start_date && _.create_time < end_date) |>
@vlplot(:bar,
x = {:create_time, "axis" = {"title" = "Time", "labelFontSize" = 12, "titleFontSize" = 14}},
y = {:floor, "axis" = {"title" = "Number of floors", "labelFontSize" = 12, "titleFontSize" = 14 }},
width = 850, height = 500,
"title" = {"text" = "Floors climbed from $(Date.(start_date)) to $(Date.(end_date))", "fontSize" = 16})
# ╔═╡ b592de9e-2c80-49c8-8525-1cbddae6fb16
save_fig("Floors_2019_2021.png", figure11)
# ╔═╡ 5430d24e-53b6-4189-bf7d-328b514e5b1f
md"
## References
1. [Analyzing Samsung Health Step data](https://www.kaggle.com/simon0204/analyzing-samsung-health-step-data)
2. [extract-health-data-from-your-samsung](https://towardsdatascience.com/extract-health-data-from-your-samsung-96b8a2e31978)
3. [VegaLite.jl](https://www.queryverse.org/VegaLite.jl/stable/examples/examples_histograms/)
"
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
HTTP = "cd3eb016-35fb-5094-929b-558a96fad6f3"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Query = "1a8c2f83-1ff3-5112-b086-8aa67b057ba1"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
VegaLite = "112f6efa-9a02-5b7d-90c0-432ed331239a"
[compat]
CSV = "~0.9.5"
DataFrames = "~1.2.2"
HTTP = "~0.9.16"
PlutoUI = "~0.7.14"
Query = "~1.0.0"
VegaLite = "~2.6.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
[[ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[CSV]]
deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings"]
git-tree-sha1 = "15b18ea098a4b5af316df529c2ff4055fcef36e9"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.9.5"
[[CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "31d0151f5716b655421d9d75b7fa74cc4e744df2"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.39.0"
[[CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.3.0"
[[Crayons]]
git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.0.4"
[[DataAPI]]
git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.9.0"
[[DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "d785f42445b63fc86caa08bb9a9351008be9b765"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.2.2"
[[DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.10"
[[DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[DataValues]]
deps = ["DataValueInterfaces", "Dates"]
git-tree-sha1 = "d88a19299eba280a6d062e135a43f00323ae70bf"
uuid = "e7dc6d0d-1eca-5fa6-8ad6-5aecde8b7ea5"
version = "0.4.13"
[[Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "3c041d2ac0a52a12a27af2782b34900d9c3ee68c"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.11.1"
[[FilePaths]]
deps = ["FilePathsBase", "MacroTools", "Reexport", "Requires"]
git-tree-sha1 = "919d9412dbf53a2e6fe74af62a73ceed0bce0629"
uuid = "8fc22ac5-c921-52a6-82fd-178b2807b824"
version = "0.8.3"
[[FilePathsBase]]
deps = ["Dates", "Mmap", "Printf", "Test", "UUIDs"]
git-tree-sha1 = "7fb0eaac190a7a68a56d2407a6beff1142daf844"
uuid = "48062228-2e41-5def-b9a4-89aafe57970f"
version = "0.9.12"
[[Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[HTTP]]
deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"]
git-tree-sha1 = "14eece7a3308b4d8be910e265c724a6ba51a9798"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "0.9.16"
[[HypertextLiteral]]
git-tree-sha1 = "72053798e1be56026b81d4e2682dbe58922e5ec9"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.0"
[[IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.2"
[[IniFile]]
deps = ["Test"]
git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8"
uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f"
version = "0.5.0"
[[InlineStrings]]
deps = ["Parsers"]
git-tree-sha1 = "19cb49649f8c41de7fea32d089d37de917b553da"
uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48"
version = "1.0.1"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[InvertedIndices]]
git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.1.0"
[[IterableTables]]
deps = ["DataValues", "IteratorInterfaceExtensions", "Requires", "TableTraits", "TableTraitsUtils"]
git-tree-sha1 = "70300b876b2cebde43ebc0df42bc8c94a144e1b4"
uuid = "1c8ee90f-4401-5389-894e-7a04a3dc0f4d"
version = "1.0.0"
[[IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.2"
[[JSONSchema]]
deps = ["HTTP", "JSON", "URIs"]
git-tree-sha1 = "2f49f7f86762a0fbbeef84912265a1ae61c4ef80"
uuid = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
version = "0.3.4"
[[LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "5a5bc6bf062f0f95e62d0fe0a2d99699fed82dd9"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.8"
[[Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.0.3"
[[MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[NodeJS]]
deps = ["Pkg"]
git-tree-sha1 = "905224bbdd4b555c69bb964514cfa387616f0d3a"
uuid = "2bd173c7-0d6d-553b-b6af-13a54713934c"
version = "1.3.0"
[[OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[Parsers]]
deps = ["Dates"]
git-tree-sha1 = "a8709b968a1ea6abc2dc1967cb1db6ac9a00dfb6"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.0.5"
[[Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[PlutoUI]]
deps = ["Base64", "Dates", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"]
git-tree-sha1 = "d1fb76655a95bf6ea4348d7197b22e889a4375f4"
uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
version = "0.7.14"
[[PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "a193d6ad9c45ada72c14b731a318bedd3c2f00cf"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.3.0"
[[PrettyTables]]
deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"]
git-tree-sha1 = "6330e0c350997f80ed18a9d8d9cb7c7ca4b3a880"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "1.2.0"
[[Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[Query]]
deps = ["DataValues", "IterableTables", "MacroTools", "QueryOperators", "Statistics"]
git-tree-sha1 = "a66aa7ca6f5c29f0e303ccef5c8bd55067df9bbe"
uuid = "1a8c2f83-1ff3-5112-b086-8aa67b057ba1"
version = "1.0.0"
[[QueryOperators]]
deps = ["DataStructures", "DataValues", "IteratorInterfaceExtensions", "TableShowUtils"]
git-tree-sha1 = "911c64c204e7ecabfd1872eb93c49b4e7c701f02"
uuid = "2aef5ad7-51ca-5a8f-8e88-e75cf067b44b"
version = "0.9.3"
[[REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.1.3"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "54f37736d8934a12a200edea2f9206b03bdf3159"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.3.7"
[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[Setfield]]
deps = ["ConstructionBase", "Future", "MacroTools", "Requires"]
git-tree-sha1 = "fca29e68c5062722b5b4435594c3d1ba557072a3"
uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46"
version = "0.7.1"
[[SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[TableShowUtils]]
deps = ["DataValues", "Dates", "JSON", "Markdown", "Test"]
git-tree-sha1 = "14c54e1e96431fb87f0d2f5983f090f1b9d06457"
uuid = "5e66a065-1f0a-5976-b372-e0b8c017ca10"
version = "0.2.5"
[[TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[TableTraitsUtils]]
deps = ["DataValues", "IteratorInterfaceExtensions", "Missings", "TableTraits"]
git-tree-sha1 = "78fecfe140d7abb480b53a44f3f85b6aa373c293"
uuid = "382cd787-c1b6-5bf2-a167-d5b971a19bda"
version = "1.0.2"
[[Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "1162ce4a6c4b7e31e0e6b14486a6986951c73be9"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.5.2"
[[Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.6"
[[URIParser]]
deps = ["Unicode"]
git-tree-sha1 = "53a9f49546b8d2dd2e688d216421d050c9a31d0d"
uuid = "30578b45-9adc-5946-b283-645ec420af67"
version = "0.4.1"
[[URIs]]
git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355"
uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4"
version = "1.3.0"
[[UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[Vega]]
deps = ["DataStructures", "DataValues", "Dates", "FileIO", "FilePaths", "IteratorInterfaceExtensions", "JSON", "JSONSchema", "MacroTools", "NodeJS", "Pkg", "REPL", "Random", "Setfield", "TableTraits", "TableTraitsUtils", "URIParser"]
git-tree-sha1 = "43f83d3119a868874d18da6bca0f4b5b6aae53f7"
uuid = "239c3e63-733f-47ad-beb7-a12fde22c578"
version = "2.3.0"
[[VegaLite]]
deps = ["Base64", "DataStructures", "DataValues", "Dates", "FileIO", "FilePaths", "IteratorInterfaceExtensions", "JSON", "MacroTools", "NodeJS", "Pkg", "REPL", "Random", "TableTraits", "TableTraitsUtils", "URIParser", "Vega"]
git-tree-sha1 = "3e23f28af36da21bfb4acef08b144f92ad205660"
uuid = "112f6efa-9a02-5b7d-90c0-432ed331239a"
version = "2.6.0"
[[WeakRefStrings]]
deps = ["DataAPI", "InlineStrings", "Parsers"]
git-tree-sha1 = "c69f9da3ff2f4f02e811c3323c22e5dfcb584cfa"
uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5"
version = "1.4.1"
[[Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# ╔═╡ Cell order:
# ╟─8268035c-aaf7-4811-b858-20161b57a0b9