We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
In notebook terminal:
$ python train.py --device cpu github: skipping check (not a git repository) YOLOv5 🚀 9d6a4aa torch 1.8.1+cpu CPU Namespace(adam=False, artifact_alias='latest', batch_size=32, bbox_interval=-1, bucket='', cache_images=False, cfg='models/yolov5s_hat.yaml', data='data/hat.yaml', device='cpu', entity=None, epochs=50, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=32, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 wandb: Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended) from n params module arguments 0 -1 1 3520 models.common.Focus [3, 32, 3] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 1 156928 models.common.C3 [128, 128, 3] 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] 6 -1 1 625152 models.common.C3 [256, 256, 3] 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 361984 models.common.C3 [512, 256, 1, False] 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 models.common.Concat [1] 17 -1 1 90880 models.common.C3 [256, 128, 1, False] 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] 19 [-1, 14] 1 0 models.common.Concat [1] 20 -1 1 296448 models.common.C3 [256, 256, 1, False] 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] 24 [17, 20, 23] 1 18879 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]] Model Summary: 283 layers, 7066239 parameters, 7066239 gradients, 16.5 GFLOPS Transferred 308/362 items from yolov5s.pt Scaled weight_decay = 0.0005 Optimizer groups: 62 .bias, 62 conv.weight, 59 other train: Scanning 'VOCdevkit/labels/train' images and labels... 5912 found, 0 missing, 13 empty, 0 corrupted: 78%|██████████████████▋ | 5912/7578 [00:02<00:00, 3088.14it/s]/opt/conda/lib/python3.8/site-packages/PIL/TiffImagePlugin.py:845: UserWarning: Corrupt EXIF data. Expecting to read 4 bytes but only got 0. warnings.warn(str(msg)) train: Scanning 'VOCdevkit/labels/train' images and labels... 7578 found, 0 missing, 13 empty, 0 corrupted: 100%|████████████████████████| 7578/7578 [00:02<00:00, 2789.12it/s] train: New cache created: VOCdevkit/labels/train.cache val: Scanning 'VOCdevkit/labels/val' images and labels... 5297 found, 0 missing, 8 empty, 0 corrupted: 100%|██████████████████████████████| 5297/5297 [00:06<00:00, 831.43it/s] val: New cache created: VOCdevkit/labels/val.cache Plotting labels... autoanchor: Analyzing anchors... anchors/target = 4.25, Best Possible Recall (BPR) = 0.9999 Image sizes 640 train, 640 test Using 8 dataloader workers Logging results to runs/train/exp Starting training for 50 epochs... Epoch gpu_mem box obj cls total labels img_size 0/49 0G 0.08902 0.08044 0.01565 0.1851 678 640: 100%|██████████████████████████████████████████████████████| 237/237 [34:19<00:00, 8.69s/it] Class Images Labels P R [email protected] [email protected]:.95: 88%|██████████████████████████████████████▋ | 73/83 [05:31<00:59, 5.96s/it] Killed
...
Training completes successfully.
No response
The text was updated successfully, but these errors were encountered:
Most probably it's caused by time out.
A more specific error message is preferred.
Sorry, something went wrong.
No branches or pull requests
Describe the bug
In notebook terminal:
Reproduction steps
...
Expected behavior
Training completes successfully.
Additional context
No response
The text was updated successfully, but these errors were encountered: