-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelliptic.py
35 lines (31 loc) · 1.48 KB
/
elliptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 # The proven prime
Acurve = 0; Bcurve = 7 # These two defines the elliptic curve. y^2 = x^3 + Acurve * x + Bcurve
N=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
#Individual Transaction/Personal Information
privKey = 0xA0DC65FFCA799873CBEA0AC274015B9526505DAAAED385155425F7337704883E #replace with any private key
def modinv(a,n=Pcurve): #Extended Euclidean Algorithm/'division' in elliptic curves
lm, hm = 1,0
low, high = a%n,n
while low > 1:
ratio = high//low
nm, new = hm-lm*ratio, high-low*ratio
lm, low, hm, high = nm, new, lm, low
return lm % n
def ECadd(a,b): # Not true addition, invented for EC. Could have been called anything.
LamAdd = ((b[1]-a[1]) * modinv(b[0]-a[0],Pcurve)) % Pcurve
x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve
y = (LamAdd*(a[0]-x)-a[1]) % Pcurve
return (x,y)
def ECdouble(a): # This is called point doubling, also invented for EC.
Lam = ((3*a[0]*a[0]+Acurve) * modinv((2*a[1]),Pcurve)) % Pcurve
x = (Lam*Lam-2*a[0]) % Pcurve
y = (Lam*(a[0]-x)-a[1]) % Pcurve
return (x,y)
def EccMultiply(GenPoint,ScalarHex): #Double & add. Not true multiplication
ScalarBin = str(bin(ScalarHex))[2:]
Q=GenPoint
for i in range (1, len(ScalarBin)): # This is invented EC multiplication.
Q=ECdouble(Q) # print "DUB", Q[0]; print
if ScalarBin[i] == "1":
Q=ECadd(Q,GenPoint) # print "ADD", Q[0]; print
return (Q)