-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
497 lines (361 loc) · 20.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from numpy.core.numeric import count_nonzero
import torch
import numpy as np
import os
import json
import matplotlib.pyplot as plt
import pickle
from torch.utils import data
from torch.utils.data.dataset import Dataset
from data_loaders.data_loader import VLDataset, VL_TestDataset
from transformers import BertTokenizer
from utils import set_seed, mkdir, setup_logger, load_config_file, synchronize
from model.VLM import VLM
from omegaconf import OmegaConf
from torch.optim.lr_scheduler import StepLR
from transformers.optimization import AdamW, get_linear_schedule_with_warmup, get_constant_schedule_with_warmup
from tqdm import tqdm
import argparse
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, DistributedSampler
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import time
import random
RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.random.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def get_dataloader(config, dataset, is_train = True):
if is_train:
if config.distributed:
sampler = DistributedSampler(dataset, shuffle=True)
batch_size = config.per_gpu_train_batch_size * max(1, config.n_gpu)
else:
sampler = RandomSampler(dataset)
batch_size = config.per_gpu_train_batch_size * max(1, config.n_gpu)
else:
sampler = SequentialSampler(dataset)
batch_size = config.per_gpu_eval_batch_size * max(1, config.n_gpu)
dataloader = DataLoader(dataset, sampler=sampler,
batch_size=batch_size, num_workers=config.num_workers)
return dataloader
# function to train!
def train(config, train_dataset, model):
# set batch size for e.g 128 per 1 gpu, 256 for 2 and 384 for 3 so on!
config.train_batch_size = config.per_gpu_train_batch_size * max(1, config.n_gpu)
# dataloader
train_dataloader = get_dataloader(config, train_dataset, is_train=True)
# slightly confusing - check later
if config.max_steps > 0:
t_total = config.max_steps
config.num_train_epochs = config.max_steps // (len(train_dataloader) // config.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // config.gradient_accumulation_steps * config.num_train_epochs
# optimizer call
grouped_parameters = model.get_optimizer_parameters()
optimizer = AdamW(grouped_parameters, lr=config.optimizer.params.lr, eps=config.optimizer.params.eps)
if config.distributed:
# initialize distributed data parallel (DDP)
model = DDP(
model,
device_ids=[config.local_rank],
output_device=config.local_rank,
find_unused_parameters=True,
)
if not config.distributed:
model = torch.nn.DataParallel(model)
model = model.to(config.device)
if config.load_from_checkpoint:
# print(config)
checkpoint_path = config.checkpoint_path
print(f"Checkpoint Path {checkpoint_path}")
assert checkpoint_path is not None
assert os.path.isfile(checkpoint_path)
logger.info("Checkpoint used: %s", checkpoint_path)
checkpoint = torch.load(checkpoint_path)
# model = torch.nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state_dict'])
# Preparing Scheduler
if config.scheduler == "constant":
scheduler = get_constant_schedule_with_warmup(
optimizer, num_warmup_steps=config.warmup_steps)
elif config.scheduler == "linear":
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=config.warmup_steps, num_training_steps=t_total)
elif config.scheduler == "step":
scheduler = StepLR(optimizer, step_size=config.scheduler_step_size, gamma=config.scheduler_gamma)
else:
raise ValueError("Unknown scheduler type: {}".format(config.scheduler))
# Data Parallel!
# if config.n_gpu > 1 and not config.distributed:
# model = torch.nn.DataParallel(model)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", config.num_train_epochs)
logger.info(" Batch size per GPU = %d", config.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, & accumulation) = %d",
config.train_batch_size * config.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", config.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
# initialize global step, loss, acc to 0
global_step, global_itm_loss, global_mlm_loss, global_itm_acc = 0, 0.0, 0.0, 0.0
# zero if any previous grads exist
model.zero_grad()
# print(model)
t_loss = v_loss = []
# val_dataset = VLDataset(config, split='val')
# val_dataloader = get_dataloader(config, val_dataset, is_train=False)
for epoch in range(int(config.start_epoch), int(config.start_epoch)+int(config.num_train_epochs)):
start = time.time()
avg_epoch_itm_loss = avg_epoch_mlm_loss = 0.0
avg_epoch_itm_acc = avg_epoch_mlm_acc = 0.0
model.train()
# let all processes sync up before starting with a new epoch of training
if config.distributed:
dist.barrier()
# print("inside dist barrier")
print(len(train_dataloader), len(train_dataloader.dataset))
for step, (idx, batch) in enumerate(train_dataloader):
# try:
# batch = tuple(t.to(torch.device(config.local_rank)) for t in batch)
batch = tuple(t.to(config.device) for t in batch)
if config.auto_neg:
pos_text_ids, pos_seq_len, pos_text_mask, pos_mlm_mask, pos_target_caption_ids, pos_img_feature, pos_img_bbox, pos_img_feature_len, pos_vis_mask, pos_txt_token_type_ids, pos_vis_token_type_ids, pos_itm_label = batch[:12]
neg_text_ids, neg_seq_len, neg_text_mask, neg_mlm_mask, neg_target_caption_ids, neg_img_feature, neg_img_bbox, neg_img_feature_len, neg_vis_mask, neg_txt_token_type_ids, neg_vis_token_type_ids, neg_itm_label = batch[12:]
input_batch = {
'text_ids' : torch.cat([pos_text_ids, neg_text_ids], dim=0),
'text_mask': torch.cat([pos_text_mask, neg_text_mask], dim=0),
'mlm_mask' : torch.cat([pos_mlm_mask, neg_mlm_mask], dim=0),
'target_caption_ids' : torch.cat([pos_target_caption_ids, neg_target_caption_ids], dim=0),
'region_features' : torch.cat([pos_img_feature, neg_img_feature], dim=0),
'region_loc' : torch.cat([pos_img_bbox, neg_img_bbox], dim=0),
'vis_mask' : torch.cat([pos_vis_mask, neg_vis_mask], dim=0),
'txt_token_type_ids': torch.cat([pos_txt_token_type_ids, neg_txt_token_type_ids], dim=0),
'vis_token_type_ids': torch.cat([pos_vis_token_type_ids, neg_vis_token_type_ids], dim=0),
'itm_label' : torch.cat([pos_itm_label, neg_itm_label], dim=0)
}
# print("Batch size: ", pos_text_ids.size()[0])
# print(pos_text_mask.shape)
# print(itm_label)
fwd_result = model(input_batch)
itm_loss = fwd_result['ITM_Loss']
mlm_loss = fwd_result['MLM_Loss']
logits = fwd_result['logits']
total_loss = config.itm_loss_weight * itm_loss + config.mlm_loss_weight * mlm_loss
batch_itm_acc = compute_itm_accuacy_from_logits_train(logits, input_batch['itm_label']).sum()
# break
if config.gradient_accumulation_steps > 1:
total_loss = total_loss / config.gradient_accumulation_steps
if config.use_mlm and config.use_itm:
if not config.distributed:
total_loss.mean().backward()
avg_epoch_itm_acc += (batch_itm_acc)
avg_epoch_itm_loss += itm_loss.mean().item()
avg_epoch_mlm_loss += mlm_loss.mean().item()
else:
total_loss.backward()
avg_epoch_itm_acc += (batch_itm_acc)
avg_epoch_itm_loss += (itm_loss.item())
avg_epoch_mlm_loss += mlm_loss.item()
elif config.use_mlm:
if not config.distributed:
mlm_loss.mean().backward()
avg_epoch_mlm_loss += mlm_loss.mean().item()
else:
mlm_loss.backward()
avg_epoch_mlm_loss += mlm_loss.item()
else:
if not config.distributed:
itm_loss.mean().backward()
avg_epoch_itm_acc += (batch_itm_acc.mean())
avg_epoch_itm_loss += (itm_loss.mean().item())
else:
itm_loss.backward()
global_itm_loss += itm_loss.item()
global_itm_acc += batch_itm_acc
# print(batch_itm_acc, logits.size()[0])
avg_epoch_itm_acc += (batch_itm_acc)
avg_epoch_itm_loss += (itm_loss.item())
if (step + 1) % config.gradient_accumulation_steps == 0:
global_step += 1
if config.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
# print(config.local_rank)
# print(global_step)
if (global_step % config.logging_steps == 0) and (config.local_rank == 0):
batch_mlm_loss = mlm_loss/(input_batch['text_ids'].size()[0])
batch_itm_loss = itm_loss/(input_batch['text_ids'].size()[0])
logger.info(f"Epoch: {epoch+1}, device: {config.local_rank}, global_step: {global_step}, lr: {optimizer.param_groups[0]['lr']:.6f}, batch_mlm_loss: {batch_mlm_loss:}, batch_itm_loss: {batch_itm_loss:}, batch_itm_acc: {batch_itm_acc/input_batch['text_ids'].size()[0]:.4f}")
print("finished frwd-backwrd loop \n")
if config.local_rank == 0:
torch.save(
{
'epoch' : epoch,
'global_step' : global_step,
'model_state_dict' : model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
},
# "/mnt/DATA3/mishra/abhiram/KMIS/VLM/vlm_eval/" + f"mmt2_checkpoint_{epoch}_{global_step}.pth",
os.path.join(config.eval_model_dir, f'checkpoint_{epoch}.pt')
)
if config.local_rank == 0:
t_loss.append((avg_epoch_itm_loss*2)/len(train_dataloader))
#v_loss.append(avg_val_itm_loss/len(val_dataloader.dataset))
logger.info(f"\n---------------------\n")
logger.info(f"Epoch {epoch+1}, epoch_mlm_train_loss: {avg_epoch_mlm_loss/len(train_dataloader.dataset)}, epoch_itm_train_loss: {avg_epoch_itm_loss/len(train_dataloader.dataset)}, epoch_itm_train_acc: {avg_epoch_itm_acc/len(train_dataloader.dataset):.4f}, time:{time.time()-start:.2f}")
#logger.info(f"Epoch {epoch+1}, epoch_itm_train_loss: {avg_epoch_itm_loss/len(train_dataloader.dataset):.6f}, epoch_itm_train_acc: {avg_epoch_itm_acc/len(train_dataloader.dataset):.4f}, epoch_itm_val_loss: {avg_val_itm_loss/len(val_dataloader.dataset):.6f}, epoch_itm_val_acc: {avg_val_itm_acc/len(val_dataloader.dataset):.4f} time:{time.time()-start:.2f}")
logger.info(f"\n---------------------\n")
# break
# break
# assert len(t_loss) == len(v_loss)
plt.plot([i for i in range(len(t_loss))],t_loss,label = "Train Loss")
plt.xlabel('No. of Epochs')
plt.ylabel('Avg Loss')
plt.title('Loss vs No. of Epochs')
plt.legend()
plt.savefig('plots/loss_curves_ft_easy.png')
plt.close()
# plt.show()
return 0,0
def test(config, model, eval_dataset):
print('TEST function here')
config.eval_batch_size = config.per_gpu_eval_batch_size * max(1, config.n_gpu)
eval_dataloader = get_dataloader(config, eval_dataset, is_train=False)
logger.info("Num examples = {}".format(len(eval_dataset)))
logger.info("Evaluation batch size = {}".format(config.eval_batch_size))
model.eval()
results = {}
softmax = torch.nn.Softmax(dim=1)
global_itm_acc = 0.0
c = 0
for indexs, (_, batch) in enumerate(eval_dataloader):
batch = tuple(t.to(torch.device(config.local_rank)) for t in batch)
with torch.no_grad():
pos_text_ids, pos_seq_len, pos_text_mask, pos_mlm_mask, pos_target_caption_ids, pos_img_feature, pos_img_bbox, pos_img_feature_len, pos_vis_mask, pos_txt_token_type_ids, pos_vis_token_type_ids, pos_itm_label = batch[:12]
neg_text_ids, neg_seq_len, neg_text_mask, neg_mlm_mask, neg_target_caption_ids, neg_img_feature, neg_img_bbox, neg_img_feature_len, neg_vis_mask, neg_txt_token_type_ids, neg_vis_token_type_ids, neg_itm_label = batch[12:]
# print("Batch size: ", pos_text_ids.size()[0])
# print(pos_text_mask.shape)
input_batch = {
'text_ids' : torch.cat([pos_text_ids, neg_text_ids], dim=0),
'text_mask': torch.cat([pos_text_mask, neg_text_mask], dim=0),
'mlm_mask' : torch.cat([pos_mlm_mask, neg_mlm_mask], dim=0),
'target_caption_ids' : torch.cat([pos_target_caption_ids, neg_target_caption_ids], dim=0),
'region_features' : torch.cat([pos_img_feature, neg_img_feature], dim=0),
'region_loc' : torch.cat([pos_img_bbox, neg_img_bbox], dim=0),
'vis_mask' : torch.cat([pos_vis_mask, neg_vis_mask], dim=0),
'txt_token_type_ids': torch.cat([pos_txt_token_type_ids, neg_txt_token_type_ids], dim=0),
'vis_token_type_ids': torch.cat([pos_vis_token_type_ids, neg_vis_token_type_ids], dim=0),
'itm_label' : torch.cat([pos_itm_label, neg_itm_label], dim=0)
}
c += input_batch['itm_label'].size()[0]
fwd_result = model(input_batch)
# loss = fwd_result['loss']
logits = fwd_result['logits']
batch_itm_acc = compute_itm_accuacy_from_logits_test(logits, input_batch['itm_label']).item()
global_itm_acc += batch_itm_acc
logger.info(f"Test Batch: {indexs}, Accuracy:{batch_itm_acc}")
final_acc = global_itm_acc/(indexs+1)
logger.info(f"Total Validation Accuracy for ITM is {final_acc}")
return final_acc
# written only for binary classifier (ITM)
def compute_itm_accuacy_from_logits_train(logits, labels):
# print(logits)
# print(torch.max(logits, 1))[1]
logits = torch.max(logits, 1)[1].data # argmax
# print(logits)
score = (logits == labels).sum()
return score
# written only for binary classifier (ITM)
def compute_itm_accuacy_from_logits_test(logits, labels):
# print(logits)
logits = torch.max(logits, 1)[1].data # argmax
# print(logits)
score = (logits == labels).sum()
return score / logits.size()[0]
def main():
parser = argparse.ArgumentParser()
# parser.add_argument("--checkpoint_path", default=None, type=str,
# required=False,
# help="if you want to resume training or eval"
# )
parser.add_argument("--do_train", action='store_true', help="whether to train the model")
parser.add_argument("--do_test", action='store_true', help="whether to test the model")
parser.add_argument("--do_eval", action='store_true', help="Whether to run performance valuation."
"do not activate if we want to inference on dataset without gt labels.")
parser.add_argument('--do_1vs1000', action='store_true', help='set to true when testing 1 vs 1000,'
'caption - image retrieval task')
parser.add_argument('--local_rank', type=int, default=0, metavar='N', help='Local process rank.') # you need this argument in your scripts for DDP to work
parser.add_argument("--start_eval_id", type=int, default=0, help='start eval id')
parser.add_argument("--end_eval_id", type=int, default=1000, help='end eval id')
parser.add_argument("--id", type=int, default=1, help='part for 1 vs 100 eval result append')
parser.add_argument('--best_epoch_test', action='store_true', help="set to true when you have some checkpoints, from which"
"best checkpoint has to be chosen")
parser.add_argument('--mode', type=str, default='itm', help='mlm or itm; for itm model expects mlm prior finetuning.')
args = parser.parse_args()
# paths
data_config_path = 'config/config_' + args.mode + '/' + 'data_config.yaml'
model_config_path = 'config/config_' + args.mode + '/' + 'model_config.yaml'
train_config_path = 'config/config_' + args.mode + '/' + 'train_config.yaml'
# load all configs
data_config = load_config_file(data_config_path)
train_config = load_config_file(train_config_path)
model_config = load_config_file(model_config_path)
config = OmegaConf.merge(train_config, data_config, model_config)
# merging cli arguments
config = OmegaConf.merge(config, OmegaConf.create(vars(args)))
if config.distributed and not config.do_eval:
args.is_master = args.local_rank == 0
# set the device
# args.device = torch.device(args.local_rank)
# initialize PyTorch distributed using environment variables (you could also do this more explicitly by specifying `rank` and `world_size`, but I find using environment variables makes it so that you can easily use the same script on different machines)
dist.init_process_group(backend='nccl', init_method='env://')
print(args.local_rank, "is initialized")
torch.cuda.set_device(args.local_rank)
# set the seed for all GPUs (also make sure to set the seed for random, numpy, etc.)
torch.cuda.manual_seed_all(config.SEED)
# setup logger and stuff
global logger
mkdir(path=config.output_dir)
mkdir(path=config.eval_model_dir)
logger = setup_logger("COFAR_ft", config.output_dir, 0)
# config.device = "cuda:0" if torch.cuda.is_available() else "cpu"
# config.n_gpu = torch.cuda.device_count()
# uncomment above line if you have access to
# all gpus in the machine (divinely :p)
logger.warning("Device: %s, n_gpu: %s", torch.device(config.device), config.n_gpu)
# tokenizer (already defined inside dataloader - can be skipped)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', local_files_only=True) # saves bert files locally
# tokenizer = BertTokenizer.from_pretrained('/nlsasfs/home/nltmocr/abhirama/bert_tokenizer')
# creating an instance of our VLM - Visual + Language MultiModal Transformer
model = VLM(model_config)
# snippet to load model weights from a checkpoint
# print(train_config.checkpoint_path)
if train_config.load_from_checkpoint and not config.do_train:
checkpoint_path = train_config.checkpoint_path
assert checkpoint_path is not None
assert os.path.isfile(checkpoint_path)
logger.info("Checkpoint used: %s", checkpoint_path)
checkpoint = torch.load(checkpoint_path)
model = torch.nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state_dict'])
# put model on cuda device if available
model = model.to(config.device)
print(model)
logger.info(f"Training/evaluation parameters {train_config}")
logger.info(f"Whole config {config}")
if config.do_train:
train_dataset = VLDataset(config)
global_step, avg_loss = train(config, train_dataset, model)
if __name__ == "__main__":
main()