-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodel.py
305 lines (264 loc) · 13.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import torch.nn as nn
import numpy as np
from time import time
import os
from collections import OrderedDict
from data import make_dataloader, make_dataloader_emnist
from plot import artificial_data_reconstruction_plot, emnist_plot_samples, emnist_plot_spectrum, emnist_plot_variation_along_dims
import FrEIA.framework as Ff
import FrEIA.modules as Fm
class GIN(nn.Module):
def __init__(self, dataset, n_epochs, epochs_per_line, lr, lr_schedule, batch_size, save_frequency, incompressible_flow, empirical_vars, data_root_dir='./', n_classes=None, n_data_points=None, init_identity=True):
super().__init__()
self.dataset = dataset
self.n_epochs = n_epochs
self.epochs_per_line = epochs_per_line
self.lr = lr
self.lr_schedule = lr_schedule
self.batch_size = batch_size
self.save_frequency = min(save_frequency, n_epochs)
self.incompressible_flow = bool(incompressible_flow)
self.empirical_vars = bool(empirical_vars)
self.init_identity = bool(init_identity)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.timestamp = str(int(time()))
if self.dataset == '10d':
self.net = construct_net_10d(coupling_block='gin' if self.incompressible_flow else 'glow', init_identity=init_identity)
assert type(n_classes) is int
self.n_classes = n_classes
self.n_dims = 10
self.save_dir = os.path.join('./artificial_data_save/', self.timestamp)
self.latent, self.data, self.target = generate_artificial_data_10d(self.n_classes, n_data_points)
self.train_loader = make_dataloader(self.data, self.target, self.batch_size)
elif self.dataset == 'EMNIST':
if not init_identity:
raise RuntimeError('init_identity=False not implemented for EMNIST experiments')
self.net = construct_net_emnist(coupling_block='gin' if self.incompressible_flow else 'glow')
self.n_classes = 10
self.n_dims = 28*28
self.save_dir = os.path.join('./emnist_save/', self.timestamp)
self.data_root_dir = data_root_dir
self.train_loader = make_dataloader_emnist(batch_size=self.batch_size, train=True, root_dir=self.data_root_dir)
self.test_loader = make_dataloader_emnist(batch_size=1000, train=False, root_dir=self.data_root_dir)
else:
raise RuntimeError("Check dataset name. Doesn't match.")
if not empirical_vars:
self.mu = nn.Parameter(torch.zeros(self.n_classes, self.n_dims).to(self.device)).requires_grad_()
self.log_sig = nn.Parameter(torch.zeros(self.n_classes, self.n_dims).to(self.device)).requires_grad_()
# initialize these parameters to reasonable values
self.set_mu_sig(init=True)
self.to(self.device)
def forward(self, x, rev=False):
x, logdet_J = self.net(x, rev=rev)
return x, logdet_J
def train_model(self):
os.makedirs(self.save_dir)
with open(os.path.join(self.save_dir, 'log.txt'), 'w') as f:
f.write(f'incompressible_flow {self.incompressible_flow}\n')
f.write(f'empirical_vars {self.empirical_vars}\n')
f.write(f'init_identity {self.init_identity}\n')
os.makedirs(os.path.join(self.save_dir, 'model_save'))
os.makedirs(os.path.join(self.save_dir, 'figures'))
print(f'\nTraining model for {self.n_epochs} epochs \n')
self.train()
self.to(self.device)
print(' time epoch iteration loss last checkpoint')
optimizer = torch.optim.Adam(self.parameters(), self.lr)
sched = torch.optim.lr_scheduler.MultiStepLR(optimizer, self.lr_schedule)
losses = []
t0 = time()
for epoch in range(self.n_epochs):
self.epoch = epoch
for batch_idx, (data, target) in enumerate(self.train_loader):
if self.empirical_vars:
# first check that std will be well defined
if min([sum(target==i).item() for i in range(self.n_classes)]) < 2:
# don't calculate loss and update weights -- it will give nan or error
# go to next batch
continue
optimizer.zero_grad()
data += torch.randn_like(data)*1e-2
data = data.to(self.device)
z, logdet_J = self.net(data) # latent space variable
if self.empirical_vars:
# we only need to calculate the std
sig = torch.stack([z[target==i].std(0, unbiased=False) for i in range(self.n_classes)])
# negative log-likelihood for gaussian in latent space
loss = 0.5 + sig[target].log().mean(1) + 0.5*np.log(2*np.pi)
else:
m = self.mu[target]
ls = self.log_sig[target]
# negative log-likelihood for gaussian in latent space
loss = torch.mean(0.5*(z-m)**2 * torch.exp(-2*ls) + ls, 1) + 0.5*np.log(2*np.pi)
loss -= logdet_J / self.n_dims
loss = loss.mean()
self.print_loss(loss.item(), batch_idx, epoch, t0)
losses.append(loss.item())
loss.backward(retain_graph=True)
optimizer.step()
if (epoch+1)%self.epochs_per_line == 0:
avg_loss = np.mean(losses)
self.print_loss(avg_loss, batch_idx, epoch, t0, new_line=True)
losses = []
sched.step()
if (epoch+1)%self.save_frequency == 0:
self.save(os.path.join(self.save_dir, 'model_save', f'{epoch+1:03d}.pt'))
self.make_plots()
def print_loss(self, loss, batch_idx, epoch, t0, new_line=False):
n_batches = len(self.train_loader)
print_str = f' {(time()-t0)/60:5.1f} {epoch+1:03d}/{self.n_epochs:03d} {batch_idx+1:04d}/{n_batches:04d} {loss:12.4f}'
if new_line:
print(print_str+' '*40)
else:
last_save = (epoch//self.save_frequency)*self.save_frequency
if last_save != 0:
print_str += f' {last_save:03d}'
print(print_str, end='\r')
def save(self, fname):
state_dict = OrderedDict((k,v) for k,v in self.state_dict().items() if not k.startswith('net.tmp_var'))
torch.save({'model': state_dict}, fname)
def load(self, fname):
data = torch.load(fname)
self.load_state_dict(data['model'])
def make_plots(self):
if self.dataset == '10d':
artificial_data_reconstruction_plot(self, self.latent, self.data, self.target)
elif self.dataset == 'EMNIST':
os.makedirs(os.path.join(self.save_dir, 'figures', f'epoch_{self.epoch+1:03d}'))
self.set_mu_sig()
sig_rms = np.sqrt(np.mean((self.sig**2).detach().cpu().numpy(), axis=0))
emnist_plot_samples(self, n_rows=20)
emnist_plot_spectrum(self, sig_rms)
n_dims_to_plot = 40
top_sig_dims = np.flip(np.argsort(sig_rms))
dims_to_plot = top_sig_dims[:n_dims_to_plot]
emnist_plot_variation_along_dims(self, dims_to_plot)
else:
raise RuntimeError("Check dataset name. Doesn't match.")
def set_mu_sig(self, init=False, n_batches=40):
if self.empirical_vars or init:
examples = iter(self.test_loader)
n_batches = min(n_batches, len(examples))
latent = []
target = []
for _ in range(n_batches):
data, targ = next(examples)
data += torch.randn_like(data)*1e-2
self.eval()
latent.append((self(data.to(self.device))[0]).detach().cpu())
target.append(targ)
latent = torch.cat(latent, 0)
target = torch.cat(target, 0)
if self.empirical_vars:
self.mu = torch.stack([latent[target == i].mean(0) for i in range(10)]).to(self.device)
self.sig = torch.stack([latent[target == i].std(0) for i in range(10)]).to(self.device)
else:
if init:
self.mu.data = torch.stack([latent[target == i].mean(0) for i in range(10)])
self.log_sig.data = torch.stack([latent[target == i].std(0) for i in range(10)]).log()
else:
self.sig = self.log_sig.exp().detach()
def subnet_fc_10d(c_in, c_out, init_identity):
subnet = nn.Sequential(nn.Linear(c_in, 10), nn.ReLU(),
nn.Linear(10, 10), nn.ReLU(),
nn.Linear(10, c_out))
if init_identity:
subnet[-1].weight.data.fill_(0.)
subnet[-1].bias.data.fill_(0.)
return subnet
def construct_net_10d(coupling_block, init_identity=True):
if coupling_block == 'gin':
block = Fm.GINCouplingBlock
else:
assert coupling_block == 'glow'
block = Fm.GLOWCouplingBlock
nodes = [Ff.InputNode(10, name='input')]
for k in range(8):
nodes.append(Ff.Node(nodes[-1], block,
{'subnet_constructor':lambda c_in,c_out: subnet_fc_10d(c_in, c_out, init_identity), 'clamp':2.0},
name=F'coupling_{k}'))
nodes.append(Ff.Node(nodes[-1], Fm.PermuteRandom,
{'seed':np.random.randint(2**31)},
name=F'permute_{k+1}'))
nodes.append(Ff.OutputNode(nodes[-1], name='output'))
return Ff.ReversibleGraphNet(nodes)
def subnet_fc(c_in, c_out):
width = 392
subnet = nn.Sequential(nn.Linear(c_in, width), nn.ReLU(),
nn.Linear(width, width), nn.ReLU(),
nn.Linear(width, c_out))
for l in subnet:
if isinstance(l, nn.Linear):
nn.init.xavier_normal_(l.weight)
subnet[-1].weight.data.fill_(0.)
subnet[-1].bias.data.fill_(0.)
return subnet
def subnet_conv1(c_in, c_out):
width = 16
subnet = nn.Sequential(nn.Conv2d(c_in, width, 3, padding=1), nn.ReLU(),
nn.Conv2d(width, width, 3, padding=1), nn.ReLU(),
nn.Conv2d(width, c_out, 3, padding=1))
for l in subnet:
if isinstance(l, nn.Conv2d):
nn.init.xavier_normal_(l.weight)
subnet[-1].weight.data.fill_(0.)
subnet[-1].bias.data.fill_(0.)
return subnet
def subnet_conv2(c_in, c_out):
width = 32
subnet = nn.Sequential(nn.Conv2d(c_in, width, 3, padding=1), nn.ReLU(),
nn.Conv2d(width, width, 3, padding=1), nn.ReLU(),
nn.Conv2d(width, c_out, 3, padding=1))
for l in subnet:
if isinstance(l, nn.Conv2d):
nn.init.xavier_normal_(l.weight)
subnet[-1].weight.data.fill_(0.)
subnet[-1].bias.data.fill_(0.)
return subnet
def construct_net_emnist(coupling_block):
if coupling_block == 'gin':
block = Fm.GINCouplingBlock
else:
assert coupling_block == 'glow'
block = Fm.GLOWCouplingBlock
nodes = [Ff.InputNode(1, 28, 28, name='input')]
nodes.append(Ff.Node(nodes[-1], Fm.IRevNetDownsampling, {}, name='downsample1'))
for k in range(4):
nodes.append(Ff.Node(nodes[-1], block,
{'subnet_constructor':subnet_conv1, 'clamp':2.0},
name=F'coupling_conv1_{k}'))
nodes.append(Ff.Node(nodes[-1],
Fm.PermuteRandom,
{'seed':np.random.randint(2**31)},
name=F'permute_conv1_{k}'))
nodes.append(Ff.Node(nodes[-1], Fm.IRevNetDownsampling, {}, name='downsample2'))
for k in range(4):
nodes.append(Ff.Node(nodes[-1], block,
{'subnet_constructor':subnet_conv2, 'clamp':2.0},
name=F'coupling_conv2_{k}'))
nodes.append(Ff.Node(nodes[-1],
Fm.PermuteRandom,
{'seed':np.random.randint(2**31)},
name=F'permute_conv2_{k}'))
nodes.append(Ff.Node(nodes[-1], Fm.Flatten, {}, name='flatten'))
for k in range(2):
nodes.append(Ff.Node(nodes[-1], block,
{'subnet_constructor':subnet_fc, 'clamp':2.0},
name=F'coupling_fc_{k}'))
nodes.append(Ff.Node(nodes[-1],
Fm.PermuteRandom,
{'seed':np.random.randint(2**31)},
name=F'permute_fc_{k}'))
nodes.append(Ff.OutputNode(nodes[-1], name='output'))
return Ff.ReversibleGraphNet(nodes)
# function is here rather than in data.py to prevent circular import
def generate_artificial_data_10d(n_clusters, n_data_points):
latent_means = torch.rand(n_clusters, 2)*10 - 5 # in range (-5, 5)
latent_stds = torch.rand(n_clusters, 2)*2.5 + 0.5 # in range (0.5, 3)
labels = torch.randint(n_clusters, size=(n_data_points,))
latent = latent_means[labels] + torch.randn(n_data_points, 2)*latent_stds[labels]
latent = torch.cat([latent, torch.randn(n_data_points, 8)*1e-2], 1)
random_transf = construct_net_10d('glow', init_identity=False)
data = random_transf(latent)[0].detach()
return latent, data, labels