forked from kr-stn/EarthEngine_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMTMF-Classification.js
832 lines (594 loc) · 34.7 KB
/
MTMF-Classification.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// Mixture Tuned Match Filtering (MTMF) Classification (MTMF_V.1.0)
// Source: Lindsi Seegmiller & Devin (UHPSI Yale) - https://groups.google.com/d/msg/google-earth-engine-developers/aGVcwWZ6WWg/MPxf2N4NXh8J
/*This script is maintained by the UHPSI Lab (http://highplainsstewardship.com/) at Yale University's School of Forestry and Environmental
Studies. It performs the Mixture Tuned Matched Filtering (MTMF) classification—an endmember based classification.
****Important note: This script requires a significant level of GEE processing power. I.e. It will sometimes return a 'timeout' error.
If this occurs, wait a few minutes then run the script again.*/
/*-------------------------------------------------------------------*/
// MTMF Process Overview
/*-------------------------------------------------------------------*/
/* Introduction:
For detailed background on MTMF, see: ftp://popo.jpl.nasa.gov/pub/docs/workshops/98_docs/8.pdf and/or
http://link.springer.com/article/10.1007/s101090100071
Though MTMF is normally applied to hyperspectral imagery, we have adapted this algorithm to use custom timeseries stacks of Landsat images
since current GEE hyperspectral data is limited.
The MTMF algorithm itself has two main inputs: an image and an endmember (i.e. a spectral signature collected from a spectral library, the
field/lab, or a training region from the image). The algorithm returns two output images: a Matched Filtering score and a Mixture Tuning
score (otherwise known as an Infeasibility Score).
The Matched Filtering score represents how closely a pixel matches the endmember on a 0 to 1 range, where 0 is least like the endmember and
1 indicates a strong match. Conceptuallly, this score also represents relative subpixel abundance of the endmember in each pixel, with the
decimal value between 0 and 1 translating to a subpixel abundance percentage, e.g. an MF score of 0.23 would equate to a predicted subpixel
endmember abundance of ≈23%, though realistically this exact relationship is not guaranteed. Note: though it is mathematically possible to
compute MF scores that are <0 or >1, this occurrence is rare and usually indicates low spectral variance in the data. (Values <0 or >1 do not
allow for the normal subpixel abundance interpretation.) A general rule for MF scores that will detect a landocver is anything above the
background distribution of MF scores across the image.
The Infeasibility Score, derived from the mixture tuning process, ranges from 0 to an indefinite maximum value. Mathematically, infeasibility
scores are the geometric distance from a pixel's spectra to the target spectra in transformed vector space. The likelihood of a pixel's false
positive classification increases as the infeasibility increases. Therefore, pixels with a high MF score and a low infeasibility score are
those most likely to contain the endmember.
*/
/*-------------------------------------------------------------------*/
// MTMF Algorithm Table of Contents
/*-------------------------------------------------------------------*/
/*
1. User Defined Options...................................................(lines 70-220)
1.1. Define the Study Area..........................................(lines 81-98)
1.2. Choose Input Data..............................................(lines 99-122)
1.3. Spectral Subset Option.........................................(lines 123-146)
1.4. Band Selection for Deriving the Shift Difference Area..........(lines 147-163)
1.5. Define Endmember...............................................(lines 164-204)
1.6. Define the Infeasibility Score Threshold.......................(lines 205-220)
2. Formatting Reserves (i.e. palettes)....................................(lines 221-245)
3. Image Preparation......................................................(lines 246-400)
4. Homogenous Region Calculation and Selection............................(lines 401-500)
5. Perform the Shift Difference Calculation on the Homogenous Region......(lines 501-529)
6. Finalize the MNF Transformation........................................(lines 530-608)
7. Display the MNF bands and chart the eigenvalues........................(lines 609-634)
8. Transform the Endmember into MNF Space.................................(lines 635-659)
9. Derive the MF Scores...................................................(lines 660-691)
10. Derive Infeasibility Scores............................................(lines 692-731)
Addendum 1: Optional Charts................................................(lines 732-817)
Addendum 2: Optional Context...............................................(lines 818-End)
*/
/*-------------------------------------------------------------------*/
//Section 1: User Defined Options
/*-------------------------------------------------------------------*/
// Choose location to display in playground
Map.setCenter(-106.54251,44.56938, 12);
// Choose Style of background map
// Map.setStyle('satellite');
/*--------------------------------------------------------*/
// Section 1.1 Define the Study Area
// ****If you would like to import your own polygon from a fusion table, define it here...
var importedStudyArea = ee.FeatureCollection('ft:1GxT2Q22KIGDjLFY1J11IX8lTAQPIoNyvBsG2fX0');
// ****If you would you like to draw your own polygon, enter the coordinates of the vertices below...
var drawnStudyArea = ee.FeatureCollection(ee.Feature(ee.Geometry.Polygon(
[[-106.5120, 44.5683],
[-106.5065, 44.5684],
[-106.5066, 44.5657],
[-106.5124, 44.5657]])));
// ****Choose study area variable
var studyarea = importedStudyArea; // Choose either importedStudyArea or drawnStudyArea (as above)
// Map.addLayer(studyarea, {opacity:0}, 'Study Area', false);
/*--------------------------------------------------------*/
// Section 1.2 Choose Input Data
// ****Choose data from the GEE Data Catalog or load your own data from MapsEngine****
// If using a single image...
// - Insert ID for a single image of your study area
var singleImage = ee.Image('SAMPLES/HYPERION_SAMPLE/EO1H0210402010195110KF');
// To create a timeseries / a collection of images...
// - Insert ID from GEE catalog and apply your desired filter dates
// - N.B. We've selected the median pixel from each collection to filter out cloud covered pixels
var winter = ee.ImageCollection('LANDSAT/LC8_L1T_8DAY_TOA').filterBounds(studyarea).filterDate('2013-12-21', '2014-03-20').median();
var spring = ee.ImageCollection('LANDSAT/LC8_L1T_8DAY_TOA').filterBounds(studyarea).filterDate('2014-03-21', '2014-06-20').median();
var summer = ee.ImageCollection('LANDSAT/LC8_L1T_8DAY_TOA').filterBounds(studyarea).filterDate('2014-06-21', '2014-09-20').median();
var fall = ee.ImageCollection('LANDSAT/LC8_L1T_8DAY_TOA').filterBounds(studyarea).filterDate('2014-09-21', '2014-12-20').median();
// Define the list of images on which you would like to perform the analysis
var imagecollectionlist = [winter,spring,summer,fall]; //[winter,spring,summer,fall]; or [singleImage];
// ****Input the known resolution of you dataset (in meters)***
var resolution = ee.Number(30);
/*--------------------------------------------------------*/
// Section 1.3 Spectral Subset Option
/*
On which band range(s) would you like to perform the transformation?
Define them, pairwise (inclusive), in the array below.
Ideally, all bands from an image would be used. However, if you're performing the analysis on imagery with many bands,
(e.g. hyperspectral data) consider subsetting the data to lessen the computational intensity of the algorithm.
E.g. [[1,10]] would select bands 1-10;
[[2,5],
[8,12],
[16,20]] would select bands 2-5,8-12, and 16-20;
[[1,1],
[2,2],
[3,3]] would select bands 1, 2, and 3;
*/
var brarray = [[1,7]];
/*--------------------------------------------------------*/
// Section 1.4 Band Selection for Shift Difference Area
/*
Below is a separate band subset selection array used to subset bands for use in the shift difference area derivation.
Ideally, the shift difference calculation would be performed using all of the selected bands from above, but given the computational
intensity of the calculation within GEE the script times-out if it is run on more than a few bands. The current suggestion is to select
the true color bands. (Most analysts performing an MNF transformation would select a shift difference area by visually inspecting
the image with these bands; as such, the true color bands for LandSat 8 appear below as the default values.)
If you would like to make changes, define them in a pairwise fashion (inclusive) in the array below.
*/
var noisebrarray = [[2,2],
[3,3],
[4,4]];
/*--------------------------------------------------------*/
// Section 1.5 Define Endmember
// Non-Image Based Endmembers
// We provide options for field/lab-collected endmembers in addition to image-based endmembers. Though we do not yet
// include a pixel purity index to select the purest pixels for image-based endmember selection, we hope to include
// this in the future.
// ****If using a an image-based endmember (from a training region)...input 1 below
// ****If using a custom endmember....................................input 2 below
var endmemberchoice = 1;
// ****If you chose 1, proceed to line 179. If you chose 2, proceed to line 197.
// If you would like to import your own polygon from a fusion table, define it here...
var importedTrainingRegion = ee.FeatureCollection('ft:1zsmCtvfmAag_0A27MwXkEA6e3474yUm3uEp_oUIp');
// If you would you like to draw your own polygon to generate an endmember, enter the coordinates of the vertices below...
var drawnTrainingRegion = ee.FeatureCollection(ee.Feature(ee.Geometry.Polygon(
[[-106.5120, 44.5683],
[-106.5065, 44.5684],
[-106.5066, 44.5657],
[-106.5124, 44.5657]])));
// ****Choose training region variable as indicated above
var trainingregion = importedTrainingRegion; // Choose either importedTrainingRegion or drawnTrainingRegion (as above)
// ****If you chose 2...
// Input the reflectance values of the endmember in the list below. Be sure to match the number and order
// of the input data bands from the imagery or the algorithm will not operate correctly.
var customEndmember = ee.Array([0.1,0.2,0.3,0.4,0.5,0.6,0.7, // Endmember reflectance values at each band from first image
0.1,0.2,0.3,0.4,0.5,0.6,0.7, // Endmember reflectance values at each band from next image
0.1,0.2,0.3,0.4,0.5,0.6,0.7, // Etc.
0.1,0.2,0.3,0.4,0.5,0.6,0.7,]); // Etc.
// Note: the number of formatted rows in this list should correspond to the number of images being used; the number of values in each
// formatted line should correspond to the number of bands selected for the analysis.
/*--------------------------------------------------------*/
// Section 1.6 Define the Infeasibility Score Threshold
// What's your desired infeasibility score threshold?
/*This number may vary greatly between different data and classifications. The default below corresponds with
the default image and endmember inputs. Typically, the threshold can range from close to zero to ≈20. The UHPSI
lab is in the midst of developing an automatic threshold selection algorithm, which would operate regardless of
the data inputs and without any additional user knowledge, to help achieve the best results in identifying presence
and abundance of the endmember. Until this algorithm is completed, adjust the infeasibility threshold according to the results
that are masked (displayed in the corresponding layer after the script has been run).*/
var userinfthreshold = 0.50;
/*-------------------------------------------------------------------*/
// Section 2: Formatting Reserves
/*-------------------------------------------------------------------*/
// Preferred color schemes can be designed here for later use
var paletteRMS = ['3366FF','000033','ffffff','3366CC','000000'];
var palette_blue2purp = ['ff00ff','006eff','00ffd0','459619'];
var MFpalette = ['8c2a04','800000', 'ff0000', 'ffA500','ffff00', '808000','008000','00ff00'];
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
///////////////////////NO USER INPUT AFTER THIS POINT///////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
/*-------------------------------------------------------------------*/
// Section 3: Image Preparation
/*-------------------------------------------------------------------*/
var collection = ee.ImageCollection.fromImages(imagecollectionlist);
// Map.addLayer(collection, {}, 'Input Data', true);
// This function performs the band range selection using the arrays defined in the section above.
var bandrangecat = function(inputarray){
var openlist = [];
var numofranges = inputarray.length-1;
for (var i = 0; i <= numofranges; i++){
var start = inputarray[i][0];
var end = inputarray[i][1];
for (var j = start; j <= end; j++){
openlist.push(j);
}
}
return openlist};
// Use the helper function from above to form a concatenated list of image bands.
var catbands = bandrangecat(brarray);
// Format the concatenated list of image bands as an array.
var catbandsarray = ee.Array(catbands).subtract(1).toList();
// Use the helper function from above to form a concatenated list of noise bands.
var catnoisebands = bandrangecat(noisebrarray);
// Format the concatenated list of noise bands as an array.
var catnoisebandsarray = ee.Array(catnoisebands).subtract(1).toList();
/*--------------------------------------------------------*/
// Subset and clip the input data
var bandsCollection = collection.map(
function(chosenimage){
// Spectrally subset input data
var originalImage = chosenimage.select(catbandsarray).clip(studyarea.geometry());
return originalImage;
}
);
// Use a map function to format a list of the band names for the image
var bandList = ee.List.sequence(1,ee.List(imagecollectionlist).length());
var images = bandList.map(function(n) {
return ee.String('Image ').cat(ee.Number(n).int());
});
// var ic = ee.ImageCollection("LANDSAT/LC8_L1T_8DAY_RAW")
var list = bandsCollection.toList(30);
var rename_bands = function (img) {
img = ee.Image(img);
var names = img.bandNames();
var prefix = ee.String(img.get("system:index")).cat("_");
var new_names = names.map(function(b) {
return prefix.cat(b); });
return img.select(names, new_names);
};
var endList = list.map(rename_bands);
var cat = function(a, b) {
return ee.Image(b).addBands(a);
};
var originalImage = ee.Image(endList.slice(1).iterate(cat, endList.get(0)));
// Map.addLayer(originalImage,{},"Original Image");
var numberofbands = originalImage.bandNames().length();
/*--------------------------------------------------------*/
// Subset and clip the noise input data
var noiseCollection = collection.map(
function(noiseimage){
// Spectrally subset input data
var noiseImage = noiseimage.select(catnoisebandsarray).clip(studyarea.geometry());
return noiseImage;
}
);
// Use a map function to format a list of the band names for the image
var noisebandList = ee.List.sequence(1,ee.List(imagecollectionlist).length());
var noiseimages = noisebandList.map(function(n) {
return ee.String('Image ').cat(ee.Number(n).int());
});
var noiselist = noiseCollection.toList(30);
var noise_rename_bands = function (img) {
img = ee.Image(img);
var names = img.bandNames();
var prefix = ee.String(img.get("system:index")).cat("_");
var new_names = names.map(function(b) {
return prefix.cat(b); });
return img.select(names, new_names);
};
var noiseendList = noiselist.map(noise_rename_bands);
var noisecat = function(a, b) {
return ee.Image(b).addBands(a);
};
var SubsetNoiseImage = ee.Image(noiseendList.slice(1).iterate(cat, noiseendList.get(0)));
/*--------------------------------------------------------*/
// Subset and clip the endmember data
// Spectral subset of each endmember image in the input collection
var endmemberCollection = collection.map(
function(emimage){
var emImage = emimage.select(catbandsarray).clip(trainingregion.geometry());
return emImage;
}
);
var endmemberlist = endmemberCollection.toList(30);
var endmember_rename_bands = function (img) {
img = ee.Image(img);
var names = img.bandNames();
var prefix = ee.String(img.get("system:index")).cat("_");
var new_names = names.map(function(b) {
return prefix.cat(b); });
return img.select(names, new_names);
};
var endmemberendList = endmemberlist.map(endmember_rename_bands);
var noisecat = function(a, b) {
return ee.Image(b).addBands(a);
};
var imageEnd = ee.Image(endmemberendList.slice(1).iterate(cat, endmemberendList.get(0)));
var imageEndArray = imageEnd.reduceRegion('mean', trainingregion.geometry(), resolution).toArray();
// Call on the user’s choice of whether to use field or image-based endmember.
var finalprep = ee.Algorithms.If(endmemberchoice==1,imageEndArray,customEndmember);
/*-------------------------------------------------------------------*/
// Section 4: Homogenous Region Calculation and Selection
/*-------------------------------------------------------------------*/
// Format a kernel to use when finding the homogenous area
var square_kernel = ee.Kernel.square(resolution.multiply(3), "meters");
// Find standard deviation for each pixel and its determined neighborhood
var stdDev = SubsetNoiseImage.reduceNeighborhood(ee.Reducer.stdDev(), square_kernel);
// Compute the quadratic mean (root mean square / RMS) of the neighborhood standard deviation through all bands for each pixel
// and then sum these values for each pixel
var RMS = stdDev.multiply(stdDev).reduce(ee.Reducer.sum()).divide(SubsetNoiseImage.bandNames().length()).sqrt();
// Find and store the minimum and maximum variance values (and their range) within the area of interest
var RMSDict = RMS
.reduceRegion({
reducer: ee.Reducer.minMax(),
geometry: studyarea.geometry(),
scale: resolution
});
var dictrmsmax = ee.Number(RMSDict.get('sum_max'));
var dictrmsmin = ee.Number(RMSDict.get('sum_min'));
var dictrange = dictrmsmax.subtract(dictrmsmin);
/*--------------------------------------------------------*/
// Find the area with the lowest variance
// Display the quadratic mean layer using the computed minimum and maximum
var RMS_vis = RMS.visualize({min:dictrmsmin, max:dictrmsmax, palette:palette_blue2purp});
// Map.addLayer(RMS_vis,{},'RMS Full Range');
// Define the threshold of how much variance is acceptable for consideration for a shift difference area
var desiredpercentage = 0.5;
var percentofrange = dictrange.multiply(desiredpercentage);
var bottompercent = dictrmsmin.add(percentofrange);
var threshold = RMS.select(['sum']).lt(bottompercent);
// Display pixels that have variance below the defined threshold
var lowRMS = threshold.mask(threshold);
// Map.addLayer(lowRMS, {min:0, max:1, palette:palette_blue2purp}, 'Pixels with low RMS', false);
/*--------------------------------------------------------*/
// Make each area an island
// Define the kernel used in the connectedComponents() call
var kernel_fixed = ee.Kernel.fixed(3, 3,[[1,1,1],
[1,0,1],
[1,1,1]]);
// Connect all pixels that meet the threshold defined above
var connected = lowRMS.connectedComponents(kernel_fixed,256);
// Determine the minimum number of pixels in the areas of interest
var pixelmin = ee.Algorithms.If(numberofbands.lte(50),ee.Number(50),numberofbands);
// Compute the number of connected pixels in each island
var count = connected.connectedPixelCount(ee.Array(pixelmin).multiply(4), true);
// Reproject the layer and disregard all areas below the minimum pixel threshold
var precount = count.reproject(
originalImage.projection().crs(),
null,
resolution).gt(ee.Number(pixelmin));
// Run a mask to leave only the islands of interest then restore the bands
var countFV = precount.mask(precount);
var RTV = countFV.addBands(countFV);
// Turn each island into a vector feature and filter out islands that do not
// meet the minimum area requirement
var islandsprep = RTV.reduceToVectors({
reducer: ee.Reducer.first(),
geometry: studyarea.geometry(),
geometryType: 'polygon',
scale: resolution,
bestEffort: true
});
var islandsWithArea = islandsprep.map(function(f) {
return f.set('area', f.geometry().area(5))});
var islands = islandsWithArea.filterMetadata('area', 'greater_than', resolution.multiply(resolution).multiply(numberofbands));
/*--------------------------------------------------------*/
// Sum each region's variance then sort the regions
//Find the total variance within each island and choose the island with the least variance
var buffvariance = RMS.reduceRegions(islands, ee.Reducer.sum(), resolution);
// Select the buffered area with the lowest variance to get the shift difference area
var buffvarImage = buffvariance.limit(1, 'sum', true);
/*-------------------------------------------------------------------*/
// Section 5: Perform the Shift Difference Calculation
/*-------------------------------------------------------------------*/
// Clip the image to the computed shift difference area
var kernelarea = originalImage.clip(buffvarImage.geometry());
// Define kernels that link a pixel to its neighbors immediately above and to the left of it
var kernel_left = ee.Kernel.fixed(3, 3, [[0,0,0],
[1,0,0],
[0,0,0]]);
var kernel_up = ee.Kernel.fixed(3, 3, [[0,1,0],
[0,0,0],
[0,0,0]]);
// Create a layer stack of neighboring pixel values in order to perform math between pixel values
var kernelimage_left = kernelarea.neighborhoodToBands(kernel_left);
var kernelimage_up = kernelarea.neighborhoodToBands(kernel_up);
var diff_left = kernelimage_left.subtract(kernelarea);
var diff_up = kernelimage_up.subtract(kernelarea);
// Find average difference between pixels for the whole shift difference area
var diff = diff_left.add(diff_up).divide(2).clip(kernelarea.geometry());
/*-------------------------------------------------------------------*/
// Section 6: Finalize the MNF Transformation
/*-------------------------------------------------------------------*/
// Find the covariance matrix of the finalized shift difference area
var covardict = diff.toArray().reduceRegion(ee.Reducer.covariance(), null, resolution, null, null, false, 800000000);
// Convert the covariance matrix into an array
var noisecovariancematrix = ee.Array(covardict.get('array'));
// Decompose the matrix into eigenvalues and eigenvectors
var eigendecomplist = noisecovariancematrix.eigen();
/*--------------------------------------------------------*/
// MNF Process Required Matrices
// Use the results of the decomposition to formulate the required matrices for the subsequent mathematics
var eigenvalues = eigendecomplist.slice(1, 0, 1);
var eigenvectors = eigendecomplist.slice(1, 1);
var matrixr = eigenvalues.sqrt().pow(-1).matrixToDiag();
var matrixcmnf = eigenvalues.pow(-1).matrixToDiag();
/*--------------------------------------------------------*/
// Noise-whiten the dataset
// Convert the image to an array
var arrayimage = originalImage.toArray();
// Find the mean value of the bands in the whole image
var meanimage = originalImage.reduceRegion('mean', studyarea.geometry(), resolution, null, null, false, 800000000);
// Make an array from the image’s band means for each band
var meanarray = ee.Array(meanimage.values());
// Mean correct the image
var meancenteredimage = arrayimage.subtract(meanarray);
// Multiply the mean centered image by the noise eigenvectors then scale the data by the noise standard deviation values
var nwarrayimage = meancenteredimage.arrayRepeat(1,1).arrayTranspose()
.matrixMultiply(eigenvectors.transpose())
.matrixMultiply(matrixr);
// Derive the covariance matrix from the noise whitened image
var nwcovardict = nwarrayimage.arrayProject([1]).reduceRegion(ee.Reducer.covariance(), studyarea.geometry(), resolution, null, null, false, 800000000);
// Eigendecompose the covariance matrix
var nwcovariancematrix = ee.Array(nwcovardict.get('array'));
var nweigendecomplist = nwcovariancematrix.eigen();
// Retrieve the eigenvalues and eigenvectors for each MNF transformed band
var nweigenvectors = nweigendecomplist.slice(1, 1);
var nweigenvalues = nweigendecomplist.slice(1, 0, 1);
// Finalize the MNF Transformation by multiplying the second eigenvector matrix by the noise-whitened data
var mnfdata = nwarrayimage.matrixMultiply(nweigenvectors.transpose());
// **End of the MNF Transformation**
var mnfcovardict = mnfdata.arrayProject([1]).reduceRegion(ee.Reducer.covariance(), null, resolution, null, null, false, 3000000000);
var mnfcovariance = ee.Array(mnfcovardict.get('array'));
// print(mnfcovariance);
var mnfeigendecomp = mnfcovariance.eigen();
var mnfeigenvalues = mnfeigendecomp.slice(1, 0, 1);
// Use a map function to retrieve the band names for the image
var bl = ee.List.sequence(1, numberofbands, 1);
var fbands = bl.map(function(n) {
return ee.String('Band ').cat(ee.Number(n).int());
});
// Flatten the array image back into a normal image and add the results to the map
var mnfimage = mnfdata.arrayFlatten([['MNF Transformed'],fbands]," ");
// Map.addLayer(mnfimage, {min:0, max:10}, "MNF Transformed Data");
/*-------------------------------------------------------------------*/
// Section 7: Display MNF bands and chart the eigenvalues
/*-------------------------------------------------------------------*/
var eigenValueArray = ee.Array(mnfeigenvalues).repeat(0,1);
var charty = Chart.array.values(eigenValueArray, 0, bl).setSeriesNames(["Eigen Values"]);
charty = charty.setOptions({
title: 'Eigenvalues For MNF Bands',
hAxis: {
title: 'MNF Bands'
},
vAxis: {
title: 'Eigenvalue'
},
lineWidth: 1,
pointSize: 4,
series: {
0: {color: 'darkgreen'}
}
});
print(charty);
/*-------------------------------------------------------------------*/
// Section 8: Transform the Endmember into MNF Space
/*-------------------------------------------------------------------*/
/*Note: the endmember array and the mean array must be adjusted so as to have
the appropriate dimensions in order for the linear algebra to operate correctly.*/
// Make the unidimensional endmember array a two dimensional array.
var endmember = ee.Array(finalprep).repeat(1,1);
//Mean center the endmember
var meancenteredendmember = endmember.subtract(meanarray.repeat(1,1));
//Noise whiten the endmember
var nwendmember = meancenteredendmember
.transpose()
.matrixMultiply(eigenvectors.transpose())
.matrixMultiply(matrixr);
//Finalize the MNF transformation by multiplying the endmember array with the noise-whitened image eigenvectors
var targetspectra = nwendmember.matrixMultiply(nweigenvectors.transpose()).transpose();
/*-------------------------------------------------------------------*/
// Section 9: Derive MF Scores
/*-------------------------------------------------------------------*/
//Find the covariance matrix of the MNF transformed data
var mnfcovardict = mnfdata.toArray().arrayProject([1])
.reduceRegion(ee.Reducer.covariance(),
studyarea.geometry(), resolution, null, null, false, 800000000);
//Decompose the matrix into eigenvalues and eigenvectors
var mnfcovariancematrix = ee.Array(mnfcovardict.get('array'));
var mnfeigendecomplist = mnfcovariancematrix.eigen();
var mnfeigenvalues = mnfeigendecomplist.slice(1, 0, 1);
//Derive the diagonal matrix of MNF eigenvalues for the MF calculation
var matrixcmnf = mnfeigenvalues.pow(-1).matrixToDiag();
// Perform the final calculations to compute MF scores at each pixel
var mfscores = mnfdata.matrixMultiply(matrixcmnf
.matrixMultiply(targetspectra)
.divide(targetspectra.transpose()
.matrixMultiply(matrixcmnf)
.matrixMultiply(targetspectra)
.get([0,0])));
Map.addLayer(mfscores.arrayProject([0]).arrayFlatten([["MF Score"]]),
{min:-1, max: 1, palette:MFpalette}, "MF Scores");
/*-------------------------------------------------------------------*/
// Section 10: Derive Infeasibility Scores for each pixel
/*-------------------------------------------------------------------*/
// Perform the calculations to compute Infeasibility scores at each pixel
var inffinal = mnfdata.subtract(mfscores.matrixMultiply(targetspectra.transpose()))
.matrixMultiply(mnfdata.subtract(mfscores.matrixMultiply(targetspectra.transpose()))
.arrayTranspose())
.sqrt()
.arrayProject([0])
.arrayFlatten([["Infeasibility"]])
.clip(studyarea.geometry())
.divide(mfscores.matrixMultiply(mnfeigenvalues.sqrt().subtract(
ee.Array.identity(numberofbands)
.matrixDiagonal())
.transpose())
.multiply(-1)
.add(mnfeigenvalues.sqrt().transpose()).pow(2).matrixMultiply(mfscores.matrixMultiply(mnfeigenvalues.sqrt().subtract(
ee.Array.identity(numberofbands)
.matrixDiagonal())
.transpose())
.multiply(-1)
.add(mnfeigenvalues.sqrt().transpose()).pow(2).arrayTranspose())
.sqrt()
.arrayProject([0])
.arrayFlatten([[" "]])
.clip(studyarea.geometry()));
Map.addLayer(inffinal, {min:0, max:0.2, palette:['b6f430','0c1744']}, "Infeasibility Scores", false);
// Threshold out high infeasibility scores, which indicate a potential false positive
var infThreshold = inffinal.gt(userinfthreshold);
// Create a mask to cover all of the false positives
var lowInf = infThreshold.mask(infThreshold);
Map.addLayer(lowInf, {min:0, max:1, palette:['b6f430','491010']}, 'Pixels deemed False Positives');
/*--------------------------------------------------------*/
// Addendum 1: Optional Charts
/*--------------------------------------------------------*/
/*This section takes sample points from different landcover types around the study site and plots their spectral profiles onto
a chart alongside the profiles of the image- or custom-endmember options. The charts only show bands used in the
classification after the image has been spectrally subset. In the future, these spectral profiles could be averages of
several points or the average reflectance values of polygonal training regions either drawn in real time or uploaded from
field-collected shapefiles.*/
// Create random points across study area (default)...
var randomPoints = ee.FeatureCollection.randomPoints(studyarea, 3);
//Map.addLayer(randomPoints, null, 'Random Chart Points');
// Manually select points to chart....
// N.B. To manually select points from certain locations in the study site, click the inspector, click on a point on the map,
// and copy and paste the coordinates from the console into the three lines below.
var landcoverOne = ee.Feature(ee.Geometry.Point(-106.5184, 44.6161),{'label': 'One'});
var landcoverTwo = ee.Feature(ee.Geometry.Point(-106.5083, 44.5747),{'label': 'Two'});
var landcoverThree = ee.Feature(ee.Geometry.Point(-106.5060, 44.5777),{'label': 'Three'});
// Cast the sample points into a Feature Collection.
var manualPoints = ee.FeatureCollection([landcoverOne, landcoverTwo, landcoverThree]);
//Map.addLayer(manualPoints, null, 'Maual Chart Points');
//****Choose chart points variable
var chartPoints = randomPoints; // Choose either randomPoints or manualPoints
// Make a list of reflectance values of the points
var collectionList = [originalImage, originalImage];
var chartCollection = ee.ImageCollection.fromImages(collectionList);
var info = chartCollection.getRegion(chartPoints, resolution);
// print(info);
// Format the data into lists in order to chart values pulled from the image with values from
// the endmember feature collection.
var bandList = ee.List(info.get(0)).slice(4);
// print('Band Names', bandList);
var wavelengthList= ee.List.sequence(1, bandList.length());
var wavelengthArray = ee.Array(wavelengthList).repeat(1,1);
// print('Wavelength List', wavelengthArray);
var oneList = ee.List(info.get(5)).slice(4);
var oneArray = ee.Array(oneList).repeat(1,1);
// print('Landcover one', oneArray);
var twoList = ee.List(info.get(1)).slice(4);
var twoArray = ee.Array(twoList).repeat(1,1);
// print('Landcover two', twoArray);
var threeList = ee.List(info.get(3)).slice(4);
var threeArray = ee.Array(threeList).repeat(1,1);
// print('Landcover three', threeArray);
// Concatenate the lists of each cover type and cast them into an array.
var arraysconcat = ee.Array.cat([oneArray,twoArray,threeArray,endmember],1);
// print("Concatenated Arrays", arraysconcat);
// Chart the values.
var arrayChart = Chart.array.values(
arraysconcat,0, wavelengthArray).setSeriesNames(["landcoverOne","landcoverTwo","landcoverThree","Endmember"]);
arrayChart = arrayChart.setOptions({
title: 'Spectral Profiles at three points in the study area',
hAxis: {
title: 'Stacked Image Bands'
},
vAxis: {
title: 'Reflectance Value'
},
lineWidth: 2,
pointSize: 1,
series: {
0: {color: 'darkgreen'},
1: {color: 'lightgreen'},
2: {color: 'lightblue'},
3: {color: 'red'},
}
});
print(arrayChart);
print('If you would like to manually select the');
print('location of the above points, see line 742.');
/*-------------------------------------------------------------------*/
// Addendum 2: Optional Context
/*-------------------------------------------------------------------*/
// Insert and display option contextual polygons, such as an outline of the study area, training regions used for
// endmember selection, or ground truth plots.
// Paint an outline of the study area
var paintImage = ee.Image(0).mask(0);
Map.addLayer(paintImage.paint(studyarea, '3300ff', 2), null, 'Outline of Study Area');
// Optional display of the training regions used for image based endmember
Map.addLayer(trainingregion, {opacity:0}, 'Endmember Training Region(s)', false);