-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathopts-mnist.lua
executable file
·43 lines (39 loc) · 1.51 KB
/
opts-mnist.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
opt = {}
-- general options:
opt.dir = 'outputs_mnist_line' -- subdirectory to save experiments in
opt.seed = 1250 -- initial random seed
-- Model parameters:
opt.inputSizeW = 64 -- width of each input patch or image
opt.inputSizeH = 64 -- width of each input patch or image
opt.eta = 1e-4 -- learning rate
opt.etaDecay = 1e-5 -- learning rate decay
opt.momentum = 0.9 -- gradient momentum
opt.maxIter = 30000 --max number of updates
opt.nSeq = 19
opt.transf = 2 -- number of parameters for transformation; 6 for affine or 3 for 2D transformation
opt.nFilters = {1,32}--9,45} -- number of filters in the encoding/decoding layers
opt.nFiltersMemory = {32,45} --{45,60}
opt.kernelSize = 7 -- size of kernels in encoder/decoder layers
opt.kernelSizeMemory = 7
opt.kernelSizeFlow = 15
opt.padding = torch.floor(opt.kernelSize/2) -- pad input before convolutions
opt.dmin = -0.5
opt.dmax = 0.5
opt.gradClip = 50
opt.stride = 1 --opt.kernelSizeMemory -- no overlap
opt.constrWeight = {0,1,0.001}
opt.memorySizeW = 32
opt.memorySizeH = 32
opt.dataFile = 'dataset_fly_64x64_lines_train.t7'
opt.dataFileTest = 'dataset_fly_64x64_lines_test.t7'
opt.modelFile = nil
opt.configFile = nil
opt.statInterval = 50 -- interval for printing error
opt.v = false -- be verbose
opt.display = true -- display stuff
opt.displayInterval = opt.statInterval
opt.save = true -- save models
opt.saveInterval = 10000
if not paths.dirp(opt.dir) then
os.execute('mkdir -p ' .. opt.dir)
end