-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
53 lines (46 loc) · 1.82 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn as nn
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class ConvNet(nn.Module):
def __init__(self, name, num_classes=10):
super(ConvNet, self).__init__()
self.name = name
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model_full = ConvNet(name='original').to(device)
model_to_quantify = ConvNet(name='quantized').to(device)
class AutoQuantizedNet(nn.Module):
def __init__(self, name, num_classes=10):
super(AutoQuantizedNet, self).__init__()
self.name = name
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2)
self.bn2 = nn.BatchNorm2d(32)
self.fc = nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.maxpool(out)
out = self.relu(self.bn2(self.conv2(out)))
out = self.maxpool(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
model_auto = AutoQuantizedNet(name='autoquantize').to(device)