forked from dsiganos/nano-workspace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
is_synced.py
executable file
·86 lines (64 loc) · 2.88 KB
/
is_synced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python3
#
# This script uses some heuristics to try and determine whether the local node is synced.
# The heuristics are:
# Get the raw telemetry data from the local node.
# If less than 100 metrics are received then fail due to insufficient data.
# Remove the highest 10% and lowest 10% of block counts (outliers).
# Calculate the average network block count after removing the outliers.
# If the local block count is less than the average network block count then the local node is not synced.
# Otherwise, it is deemed to be synced.
import requests
import json
import sys
import argparse
import common
def average(lst):
if len(lst) == 0: return 0
return sum(lst) // len(lst)
def parse_args():
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group()
group.add_argument('-b', '--beta', action='store_true', default=False,
help='use beta network')
group.add_argument('-t', '--test', action='store_true', default=False,
help='use test network')
parser.add_argument('--rpc',
help='RPC URL to contact')
parser.add_argument('-m', '--metrics', default=100, type=int,
help='minimum numbers of metrics to get')
return parser.parse_args()
args = parse_args()
rpc_url = common.get_rpc_url(args)
print('RPC URL = %s' % rpc_url)
session = requests.Session()
# obtain raw telemetry data
result = common.post(session, {'action' : 'telemetry', 'raw' : 'true'}, rpc_url)
metrics = result['metrics']
# we want to see at least 100 results
if len(metrics) < args.metrics:
print('ERROR: not enough telemetry data, only %d metrics received' % len(metrics))
sys.exit(1)
# sort metrics by block_count
metrics.sort(key=lambda x: int(x['block_count']), reverse=True)
# drop the first 10% and last 10% (outliers)
a = len(metrics) * 10 // 100
b = len(metrics) * 90 // 100
metrics_filtered = metrics[a:b]
# extract the block counts only from the filtered metrics
block_counts_filtered = [ int(x['block_count']) for x in metrics_filtered ]
# calculate the average of the filtered block counts
average_block_count = average(block_counts_filtered)
# now get the local node block count and compare it to average network block count
result = common.post(session, {'action' : 'block_count'}, rpc_url)
local_block_count = int(result['count'])
diff = local_block_count - average_block_count
print('Local block count: %s, Average network block count: %s, Max bc: %s, Diff: %s' %
(local_block_count, average_block_count, max(block_counts_filtered), diff))
print('Local block count: %s, Max network block count: %s, Diff: %s' %
(local_block_count, max(block_counts_filtered), local_block_count - max(block_counts_filtered)))
if diff < 0:
print('ERROR: the local node is not synced sufficiently')
sys.exit(1)
print('SUCCESS: local node is synced!')
sys.exit(0)