-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmain_qm9.py
141 lines (116 loc) · 6.21 KB
/
main_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from qm9 import dataset
from qm9.models import EGNN
import torch
from torch import nn, optim
import argparse
from qm9 import utils as qm9_utils
import utils
import json
parser = argparse.ArgumentParser(description='QM9 Example')
parser.add_argument('--exp_name', type=str, default='exp_1', metavar='N',
help='experiment_name')
parser.add_argument('--batch_size', type=int, default=96, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test_interval', type=int, default=1, metavar='N',
help='how many epochs to wait before logging test')
parser.add_argument('--outf', type=str, default='qm9/logs', metavar='N',
help='folder to output vae')
parser.add_argument('--lr', type=float, default=1e-3, metavar='N',
help='learning rate')
parser.add_argument('--nf', type=int, default=128, metavar='N',
help='learning rate')
parser.add_argument('--attention', type=int, default=1, metavar='N',
help='attention in the ae model')
parser.add_argument('--n_layers', type=int, default=7, metavar='N',
help='number of layers for the autoencoder')
parser.add_argument('--property', type=str, default='homo', metavar='N',
help='label to predict: alpha | gap | homo | lumo | mu | Cv | G | H | r2 | U | U0 | zpve')
parser.add_argument('--num_workers', type=int, default=0, metavar='N',
help='number of workers for the dataloader')
parser.add_argument('--charge_power', type=int, default=2, metavar='N',
help='maximum power to take into one-hot features')
parser.add_argument('--dataset_paper', type=str, default="cormorant", metavar='N',
help='cormorant, lie_conv')
parser.add_argument('--node_attr', type=int, default=0, metavar='N',
help='node_attr or not')
parser.add_argument('--weight_decay', type=float, default=1e-16, metavar='N',
help='weight decay')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
dtype = torch.float32
print(args)
utils.makedir(args.outf)
utils.makedir(args.outf + "/" + args.exp_name)
dataloaders, charge_scale = dataset.retrieve_dataloaders(args.batch_size, args.num_workers)
# compute mean and mean absolute deviation
meann, mad = qm9_utils.compute_mean_mad(dataloaders, args.property)
model = EGNN(in_node_nf=15, in_edge_nf=0, hidden_nf=args.nf, device=device, n_layers=args.n_layers, coords_weight=1.0,
attention=args.attention, node_attr=args.node_attr)
print(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
loss_l1 = nn.L1Loss()
def train(epoch, loader, partition='train'):
lr_scheduler.step()
res = {'loss': 0, 'counter': 0, 'loss_arr':[]}
for i, data in enumerate(loader):
if partition == 'train':
model.train()
optimizer.zero_grad()
else:
model.eval()
batch_size, n_nodes, _ = data['positions'].size()
atom_positions = data['positions'].view(batch_size * n_nodes, -1).to(device, dtype)
atom_mask = data['atom_mask'].view(batch_size * n_nodes, -1).to(device, dtype)
edge_mask = data['edge_mask'].to(device, dtype)
one_hot = data['one_hot'].to(device, dtype)
charges = data['charges'].to(device, dtype)
nodes = qm9_utils.preprocess_input(one_hot, charges, args.charge_power, charge_scale, device)
nodes = nodes.view(batch_size * n_nodes, -1)
# nodes = torch.cat([one_hot, charges], dim=1)
edges = qm9_utils.get_adj_matrix(n_nodes, batch_size, device)
label = data[args.property].to(device, dtype)
pred = model(h0=nodes, x=atom_positions, edges=edges, edge_attr=None, node_mask=atom_mask, edge_mask=edge_mask,
n_nodes=n_nodes)
if partition == 'train':
loss = loss_l1(pred, (label - meann) / mad)
loss.backward()
optimizer.step()
else:
loss = loss_l1(mad * pred + meann, label)
res['loss'] += loss.item() * batch_size
res['counter'] += batch_size
res['loss_arr'].append(loss.item())
prefix = ""
if partition != 'train':
prefix = ">> %s \t" % partition
if i % args.log_interval == 0:
print(prefix + "Epoch %d \t Iteration %d \t loss %.4f" % (epoch, i, sum(res['loss_arr'][-10:])/len(res['loss_arr'][-10:])))
return res['loss'] / res['counter']
if __name__ == "__main__":
res = {'epochs': [], 'losess': [], 'best_val': 1e10, 'best_test': 1e10, 'best_epoch': 0}
for epoch in range(0, args.epochs):
train(epoch, dataloaders['train'], partition='train')
if epoch % args.test_interval == 0:
val_loss = train(epoch, dataloaders['valid'], partition='valid')
test_loss = train(epoch, dataloaders['test'], partition='test')
res['epochs'].append(epoch)
res['losess'].append(test_loss)
if val_loss < res['best_val']:
res['best_val'] = val_loss
res['best_test'] = test_loss
res['best_epoch'] = epoch
print("Val loss: %.4f \t test loss: %.4f \t epoch %d" % (val_loss, test_loss, epoch))
print("Best: val loss: %.4f \t test loss: %.4f \t epoch %d" % (res['best_val'], res['best_test'], res['best_epoch']))
json_object = json.dumps(res, indent=4)
with open(args.outf + "/" + args.exp_name + "/losess.json", "w") as outfile:
outfile.write(json_object)