-
Notifications
You must be signed in to change notification settings - Fork 0
/
ecp_nistp256_core.c
1455 lines (1280 loc) · 39.4 KB
/
ecp_nistp256_core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Edited by Douglas Wikstrom (2016) as follows: (1) The OpenSSL
* specific includes at the beginning has been removed, (2) Parts of
* the code has been deactivated using #if 0....#endif. These are
* marked with VERIFICATUM_NISTP256_OMITTED. (3) The end of the file
* has been removed.
*/
/*
* Written by Adam Langley (Google) for the OpenSSL project
*/
/* Copyright 2011 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
*
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
*
* OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
* Otherwise based on Emilia's P224 work, which was inspired by my curve25519
* work which got its smarts from Daniel J. Bernstein's work on the same.
*/
#include <stdint.h>
#include <string.h>
#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
/* even with gcc, the typedef won't work for 32-bit platforms */
typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
* platforms */
typedef __int128_t int128_t;
#else
#error "Need GCC 3.1 or later to define type uint128_t"
#endif
typedef uint8_t u8;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int64_t s64;
/*
* The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
* can serialise an element of this field into 32 bytes. We call this an
* felem_bytearray.
*/
typedef u8 felem_bytearray[32];
/*
* These are the parameters of P256, taken from FIPS 186-3, page 86. These
* values are big-endian.
*/
static const felem_bytearray nistp256_curve_params[5] = {
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */
{0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
{0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
{0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
};
/*-
* The representation of field elements.
* ------------------------------------
*
* We represent field elements with either four 128-bit values, eight 128-bit
* values, or four 64-bit values. The field element represented is:
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
* or:
* v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
*
* 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
* apart, but are 128-bits wide, the most significant bits of each limb overlap
* with the least significant bits of the next.
*
* A field element with four limbs is an 'felem'. One with eight limbs is a
* 'longfelem'
*
* A field element with four, 64-bit values is called a 'smallfelem'. Small
* values are used as intermediate values before multiplication.
*/
/* VERIFICATUM ENABLED THIS AGAIN. */
#define NLIMBS 4
typedef uint128_t limb;
typedef limb felem[NLIMBS];
typedef limb longfelem[NLIMBS * 2];
typedef u64 smallfelem[NLIMBS];
/* This is the value of the prime as four 64-bit words, little-endian. */
static const u64 kPrime[4] =
{ 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
static const u64 bottom63bits = 0x7ffffffffffffffful;
#if 0 /* VERIFICATUM_NISTP256_OMITTED */
/*
* bin32_to_felem takes a little-endian byte array and converts it into felem
* form. This assumes that the CPU is little-endian.
*/
static void bin32_to_felem(felem out, const u8 in[32])
{
out[0] = *((u64 *)&in[0]);
out[1] = *((u64 *)&in[8]);
out[2] = *((u64 *)&in[16]);
out[3] = *((u64 *)&in[24]);
}
/*
* smallfelem_to_bin32 takes a smallfelem and serialises into a little
* endian, 32 byte array. This assumes that the CPU is little-endian.
*/
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
{
*((u64 *)&out[0]) = in[0];
*((u64 *)&out[8]) = in[1];
*((u64 *)&out[16]) = in[2];
*((u64 *)&out[24]) = in[3];
}
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
{
unsigned i;
for (i = 0; i < len; ++i)
out[i] = in[len - 1 - i];
}
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
static int BN_to_felem(felem out, const BIGNUM *bn)
{
felem_bytearray b_in;
felem_bytearray b_out;
unsigned num_bytes;
/* BN_bn2bin eats leading zeroes */
memset(b_out, 0, sizeof(b_out));
num_bytes = BN_num_bytes(bn);
if (num_bytes > sizeof b_out) {
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
if (BN_is_negative(bn)) {
ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
return 0;
}
num_bytes = BN_bn2bin(bn, b_in);
flip_endian(b_out, b_in, num_bytes);
bin32_to_felem(out, b_out);
return 1;
}
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
{
felem_bytearray b_in, b_out;
smallfelem_to_bin32(b_in, in);
flip_endian(b_out, b_in, sizeof b_out);
return BN_bin2bn(b_out, sizeof b_out, out);
}
#endif /* VERIFICATUM_NISTP256_OMITTED */
/*-
* Field operations
* ----------------
*/
#if 0 /* VERIFICATUM_NISTP256_OMITTED */
static void smallfelem_one(smallfelem out)
{
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
}
#endif /* VERIFICATUM_NISTP256_OMITTED */
static void smallfelem_assign(smallfelem out, const smallfelem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
static void felem_assign(felem out, const felem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
/* felem_sum sets out = out + in. */
static void felem_sum(felem out, const felem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
/* felem_small_sum sets out = out + in. */
static void felem_small_sum(felem out, const smallfelem in)
{
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
/* felem_scalar sets out = out * scalar */
static void felem_scalar(felem out, const u64 scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
}
/* longfelem_scalar sets out = out * scalar */
static void longfelem_scalar(longfelem out, const u64 scalar)
{
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
out[7] *= scalar;
}
# define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
# define two105 (((limb)1) << 105)
# define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
/* zero105 is 0 mod p */
static const felem zero105 =
{ two105m41m9, two105, two105m41p9, two105m41p9 };
#if 0 /* VERIFICATUM_NISTP256_OMITTED */
/*-
* smallfelem_neg sets |out| to |-small|
* On exit:
* out[i] < out[i] + 2^105
*/
static void smallfelem_neg(felem out, const smallfelem small)
{
/* In order to prevent underflow, we subtract from 0 mod p. */
out[0] = zero105[0] - small[0];
out[1] = zero105[1] - small[1];
out[2] = zero105[2] - small[2];
out[3] = zero105[3] - small[3];
}
#endif /* VERIFICATUM_NISTP256_OMITTED */
/*-
* felem_diff subtracts |in| from |out|
* On entry:
* in[i] < 2^104
* On exit:
* out[i] < out[i] + 2^105
*/
static void felem_diff(felem out, const felem in)
{
/*
* In order to prevent underflow, we add 0 mod p before subtracting.
*/
out[0] += zero105[0];
out[1] += zero105[1];
out[2] += zero105[2];
out[3] += zero105[3];
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
# define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
# define two107 (((limb)1) << 107)
# define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
/* zero107 is 0 mod p */
static const felem zero107 =
{ two107m43m11, two107, two107m43p11, two107m43p11 };
/*-
* An alternative felem_diff for larger inputs |in|
* felem_diff_zero107 subtracts |in| from |out|
* On entry:
* in[i] < 2^106
* On exit:
* out[i] < out[i] + 2^107
*/
static void felem_diff_zero107(felem out, const felem in)
{
/*
* In order to prevent underflow, we add 0 mod p before subtracting.
*/
out[0] += zero107[0];
out[1] += zero107[1];
out[2] += zero107[2];
out[3] += zero107[3];
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
/*-
* longfelem_diff subtracts |in| from |out|
* On entry:
* in[i] < 7*2^67
* On exit:
* out[i] < out[i] + 2^70 + 2^40
*/
static void longfelem_diff(longfelem out, const longfelem in)
{
static const limb two70m8p6 =
(((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
static const limb two70 = (((limb) 1) << 70);
static const limb two70m40m38p6 =
(((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
(((limb) 1) << 6);
static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
/* add 0 mod p to avoid underflow */
out[0] += two70m8p6;
out[1] += two70p40;
out[2] += two70;
out[3] += two70m40m38p6;
out[4] += two70m6;
out[5] += two70m6;
out[6] += two70m6;
out[7] += two70m6;
/* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
out[4] -= in[4];
out[5] -= in[5];
out[6] -= in[6];
out[7] -= in[7];
}
/* VERIFICATUM ENABLED */
#define two64m0 (((limb)1) << 64) - 1
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
/* zero110 is 0 mod p */
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
/*-
* felem_shrink converts an felem into a smallfelem. The result isn't quite
* minimal as the value may be greater than p.
*
* On entry:
* in[i] < 2^109
* On exit:
* out[i] < 2^64
*/
static void felem_shrink(smallfelem out, const felem in)
{
felem tmp;
u64 a, b, mask;
s64 high, low;
static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
/* Carry 2->3 */
tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
/* tmp[3] < 2^110 */
tmp[2] = zero110[2] + (u64)in[2];
tmp[0] = zero110[0] + in[0];
tmp[1] = zero110[1] + in[1];
/* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
/*
* We perform two partial reductions where we eliminate the high-word of
* tmp[3]. We don't update the other words till the end.
*/
a = tmp[3] >> 64; /* a < 2^46 */
tmp[3] = (u64)tmp[3];
tmp[3] -= a;
tmp[3] += ((limb) a) << 32;
/* tmp[3] < 2^79 */
b = a;
a = tmp[3] >> 64; /* a < 2^15 */
b += a; /* b < 2^46 + 2^15 < 2^47 */
tmp[3] = (u64)tmp[3];
tmp[3] -= a;
tmp[3] += ((limb) a) << 32;
/* tmp[3] < 2^64 + 2^47 */
/*
* This adjusts the other two words to complete the two partial
* reductions.
*/
tmp[0] += b;
tmp[1] -= (((limb) b) << 32);
/*
* In order to make space in tmp[3] for the carry from 2 -> 3, we
* conditionally subtract kPrime if tmp[3] is large enough.
*/
high = tmp[3] >> 64;
/* As tmp[3] < 2^65, high is either 1 or 0 */
high <<= 63;
high >>= 63;
/*-
* high is:
* all ones if the high word of tmp[3] is 1
* all zeros if the high word of tmp[3] if 0 */
low = tmp[3];
mask = low >> 63;
/*-
* mask is:
* all ones if the MSB of low is 1
* all zeros if the MSB of low if 0 */
low &= bottom63bits;
low -= kPrime3Test;
/* if low was greater than kPrime3Test then the MSB is zero */
low = ~low;
low >>= 63;
/*-
* low is:
* all ones if low was > kPrime3Test
* all zeros if low was <= kPrime3Test */
mask = (mask & low) | high;
tmp[0] -= mask & kPrime[0];
tmp[1] -= mask & kPrime[1];
/* kPrime[2] is zero, so omitted */
tmp[3] -= mask & kPrime[3];
/* tmp[3] < 2**64 - 2**32 + 1 */
tmp[1] += ((u64)(tmp[0] >> 64));
tmp[0] = (u64)tmp[0];
tmp[2] += ((u64)(tmp[1] >> 64));
tmp[1] = (u64)tmp[1];
tmp[3] += ((u64)(tmp[2] >> 64));
tmp[2] = (u64)tmp[2];
/* tmp[i] < 2^64 */
out[0] = tmp[0];
out[1] = tmp[1];
out[2] = tmp[2];
out[3] = tmp[3];
}
/* smallfelem_expand converts a smallfelem to an felem */
static void smallfelem_expand(felem out, const smallfelem in)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
/*-
* smallfelem_square sets |out| = |small|^2
* On entry:
* small[i] < 2^64
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void smallfelem_square(longfelem out, const smallfelem small)
{
limb a;
u64 high, low;
a = ((uint128_t) small[0]) * small[0];
low = a;
high = a >> 64;
out[0] = low;
out[1] = high;
a = ((uint128_t) small[0]) * small[1];
low = a;
high = a >> 64;
out[1] += low;
out[1] += low;
out[2] = high;
a = ((uint128_t) small[0]) * small[2];
low = a;
high = a >> 64;
out[2] += low;
out[2] *= 2;
out[3] = high;
a = ((uint128_t) small[0]) * small[3];
low = a;
high = a >> 64;
out[3] += low;
out[4] = high;
a = ((uint128_t) small[1]) * small[2];
low = a;
high = a >> 64;
out[3] += low;
out[3] *= 2;
out[4] += high;
a = ((uint128_t) small[1]) * small[1];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small[1]) * small[3];
low = a;
high = a >> 64;
out[4] += low;
out[4] *= 2;
out[5] = high;
a = ((uint128_t) small[2]) * small[3];
low = a;
high = a >> 64;
out[5] += low;
out[5] *= 2;
out[6] = high;
out[6] += high;
a = ((uint128_t) small[2]) * small[2];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small[3]) * small[3];
low = a;
high = a >> 64;
out[6] += low;
out[7] = high;
}
/*-
* felem_square sets |out| = |in|^2
* On entry:
* in[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_square(longfelem out, const felem in)
{
u64 small[4];
felem_shrink(small, in);
smallfelem_square(out, small);
}
/*-
* smallfelem_mul sets |out| = |small1| * |small2|
* On entry:
* small1[i] < 2^64
* small2[i] < 2^64
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void smallfelem_mul(longfelem out, const smallfelem small1,
const smallfelem small2)
{
limb a;
u64 high, low;
a = ((uint128_t) small1[0]) * small2[0];
low = a;
high = a >> 64;
out[0] = low;
out[1] = high;
a = ((uint128_t) small1[0]) * small2[1];
low = a;
high = a >> 64;
out[1] += low;
out[2] = high;
a = ((uint128_t) small1[1]) * small2[0];
low = a;
high = a >> 64;
out[1] += low;
out[2] += high;
a = ((uint128_t) small1[0]) * small2[2];
low = a;
high = a >> 64;
out[2] += low;
out[3] = high;
a = ((uint128_t) small1[1]) * small2[1];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small1[2]) * small2[0];
low = a;
high = a >> 64;
out[2] += low;
out[3] += high;
a = ((uint128_t) small1[0]) * small2[3];
low = a;
high = a >> 64;
out[3] += low;
out[4] = high;
a = ((uint128_t) small1[1]) * small2[2];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[2]) * small2[1];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[3]) * small2[0];
low = a;
high = a >> 64;
out[3] += low;
out[4] += high;
a = ((uint128_t) small1[1]) * small2[3];
low = a;
high = a >> 64;
out[4] += low;
out[5] = high;
a = ((uint128_t) small1[2]) * small2[2];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small1[3]) * small2[1];
low = a;
high = a >> 64;
out[4] += low;
out[5] += high;
a = ((uint128_t) small1[2]) * small2[3];
low = a;
high = a >> 64;
out[5] += low;
out[6] = high;
a = ((uint128_t) small1[3]) * small2[2];
low = a;
high = a >> 64;
out[5] += low;
out[6] += high;
a = ((uint128_t) small1[3]) * small2[3];
low = a;
high = a >> 64;
out[6] += low;
out[7] = high;
}
/*-
* felem_mul sets |out| = |in1| * |in2|
* On entry:
* in1[i] < 2^109
* in2[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_mul(longfelem out, const felem in1, const felem in2)
{
smallfelem small1, small2;
felem_shrink(small1, in1);
felem_shrink(small2, in2);
smallfelem_mul(out, small1, small2);
}
/*-
* felem_small_mul sets |out| = |small1| * |in2|
* On entry:
* small1[i] < 2^64
* in2[i] < 2^109
* On exit:
* out[i] < 7 * 2^64 < 2^67
*/
static void felem_small_mul(longfelem out, const smallfelem small1,
const felem in2)
{
smallfelem small2;
felem_shrink(small2, in2);
smallfelem_mul(out, small1, small2);
}
# define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
# define two100 (((limb)1) << 100)
# define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
/* zero100 is 0 mod p */
static const felem zero100 =
{ two100m36m4, two100, two100m36p4, two100m36p4 };
/*-
* Internal function for the different flavours of felem_reduce.
* felem_reduce_ reduces the higher coefficients in[4]-in[7].
* On entry:
* out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
* out[1] >= in[7] + 2^32*in[4]
* out[2] >= in[5] + 2^32*in[5]
* out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
* On exit:
* out[0] <= out[0] + in[4] + 2^32*in[5]
* out[1] <= out[1] + in[5] + 2^33*in[6]
* out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
* out[3] <= out[3] + 2^32*in[4] + 3*in[7]
*/
static void felem_reduce_(felem out, const longfelem in)
{
int128_t c;
/* combine common terms from below */
c = in[4] + (in[5] << 32);
out[0] += c;
out[3] -= c;
c = in[5] - in[7];
out[1] += c;
out[2] -= c;
/* the remaining terms */
/* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
out[1] -= (in[4] << 32);
out[3] += (in[4] << 32);
/* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
out[2] -= (in[5] << 32);
/* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
out[0] -= in[6];
out[0] -= (in[6] << 32);
out[1] += (in[6] << 33);
out[2] += (in[6] * 2);
out[3] -= (in[6] << 32);
/* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
out[0] -= in[7];
out[0] -= (in[7] << 32);
out[2] += (in[7] << 33);
out[3] += (in[7] * 3);
}
/*-
* felem_reduce converts a longfelem into an felem.
* To be called directly after felem_square or felem_mul.
* On entry:
* in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
* in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
* On exit:
* out[i] < 2^101
*/
static void felem_reduce(felem out, const longfelem in)
{
out[0] = zero100[0] + in[0];
out[1] = zero100[1] + in[1];
out[2] = zero100[2] + in[2];
out[3] = zero100[3] + in[3];
felem_reduce_(out, in);
/*-
* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
* out[1] > 2^100 - 2^64 - 7*2^96 > 0
* out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
* out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
*
* out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
* out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
* out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
* out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
*/
}
/*-
* felem_reduce_zero105 converts a larger longfelem into an felem.
* On entry:
* in[0] < 2^71
* On exit:
* out[i] < 2^106
*/
static void felem_reduce_zero105(felem out, const longfelem in)
{
out[0] = zero105[0] + in[0];
out[1] = zero105[1] + in[1];
out[2] = zero105[2] + in[2];
out[3] = zero105[3] + in[3];
felem_reduce_(out, in);
/*-
* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
* out[1] > 2^105 - 2^71 - 2^103 > 0
* out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
* out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
*
* out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
* out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
* out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
* out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
*/
}
/*
* subtract_u64 sets *result = *result - v and *carry to one if the
* subtraction underflowed.
*/
static void subtract_u64(u64 *result, u64 *carry, u64 v)
{
uint128_t r = *result;
r -= v;
*carry = (r >> 64) & 1;
*result = (u64)r;
}
/*
* felem_contract converts |in| to its unique, minimal representation. On
* entry: in[i] < 2^109
*/
static void felem_contract(smallfelem out, const felem in)
{
unsigned i;
u64 all_equal_so_far = 0, result = 0, carry;
felem_shrink(out, in);
/* small is minimal except that the value might be > p */
all_equal_so_far--;
/*
* We are doing a constant time test if out >= kPrime. We need to compare
* each u64, from most-significant to least significant. For each one, if
* all words so far have been equal (m is all ones) then a non-equal
* result is the answer. Otherwise we continue.
*/
for (i = 3; i < 4; i--) {
u64 equal;
uint128_t a = ((uint128_t) kPrime[i]) - out[i];
/*
* if out[i] > kPrime[i] then a will underflow and the high 64-bits
* will all be set.
*/
result |= all_equal_so_far & ((u64)(a >> 64));
/*
* if kPrime[i] == out[i] then |equal| will be all zeros and the
* decrement will make it all ones.
*/
equal = kPrime[i] ^ out[i];
equal--;
equal &= equal << 32;
equal &= equal << 16;
equal &= equal << 8;
equal &= equal << 4;
equal &= equal << 2;
equal &= equal << 1;
equal = ((s64) equal) >> 63;
all_equal_so_far &= equal;
}
/*
* if all_equal_so_far is still all ones then the two values are equal
* and so out >= kPrime is true.
*/
result |= all_equal_so_far;
/* if out >= kPrime then we subtract kPrime. */
subtract_u64(&out[0], &carry, result & kPrime[0]);
subtract_u64(&out[1], &carry, carry);
subtract_u64(&out[2], &carry, carry);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[1], &carry, result & kPrime[1]);
subtract_u64(&out[2], &carry, carry);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[2], &carry, result & kPrime[2]);
subtract_u64(&out[3], &carry, carry);
subtract_u64(&out[3], &carry, result & kPrime[3]);
}
#if 0 /* VERIFICATUM_NISTP256_OMITTED */
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
{
longfelem longtmp;
felem tmp;
smallfelem_square(longtmp, in);
felem_reduce(tmp, longtmp);
felem_contract(out, tmp);
}
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
const smallfelem in2)
{
longfelem longtmp;
felem tmp;
smallfelem_mul(longtmp, in1, in2);
felem_reduce(tmp, longtmp);
felem_contract(out, tmp);
}
#endif /* VERIFICATUM_NISTP256_OMITTED */
/*-
* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
* otherwise.
* On entry:
* small[i] < 2^64
*/
static limb smallfelem_is_zero(const smallfelem small)
{
limb result;
u64 is_p;
u64 is_zero = small[0] | small[1] | small[2] | small[3];
is_zero--;
is_zero &= is_zero << 32;
is_zero &= is_zero << 16;
is_zero &= is_zero << 8;
is_zero &= is_zero << 4;
is_zero &= is_zero << 2;
is_zero &= is_zero << 1;
is_zero = ((s64) is_zero) >> 63;
is_p = (small[0] ^ kPrime[0]) |
(small[1] ^ kPrime[1]) |
(small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
is_p--;
is_p &= is_p << 32;
is_p &= is_p << 16;
is_p &= is_p << 8;
is_p &= is_p << 4;
is_p &= is_p << 2;
is_p &= is_p << 1;
is_p = ((s64) is_p) >> 63;
is_zero |= is_p;
result = is_zero;
result |= ((limb) is_zero) << 64;
return result;
}
#if 0 /* VERIFICATUM_NISTP256_OMITTED */
static int smallfelem_is_zero_int(const smallfelem small)
{
return (int)(smallfelem_is_zero(small) & ((limb) 1));
}
/*-