forked from xcj2012/Configuration-61850
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CRC32.h
1340 lines (1321 loc) · 55.5 KB
/
CRC32.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2006 - 2008, All Rights Reserved.
CRC32算法实现
作者 - 张鲁夺(zhangluduo)
MSN - [email protected]
QQ群 - 34064264
为所有爱我的人和我爱的人努力!
*/
#ifndef _CRC32_H
#define _CRC32_H
class CRC32
{
public:
CRC32();
virtual ~CRC32();
private:
unsigned long m_Table[256];
unsigned long Reflect(unsigned long ref, char ch);
public:
void CRCInit (unsigned long &Result);
void CRCUpdate ( char* buffer, unsigned long size, unsigned long &Result);
void CRCFinal (unsigned long &Result);
};
#endif
/** for test
unsigned long CRCResult;
m_CRC32.CRCInit(CRCResult);
m_CRC32.CRCUpdate((unsigned char *)"hello", strlen("hello"), CRCResult);
m_CRC32.CRCFinal(CRCResult);
CString strResult;
strResult.Format("The CRC-32 Result is %.8X", CRCResult);
AfxMessageBox(strResult);
*/
// FileName : RFC3385.txt
//
// Network Working Group D. Sheinwald
// Request for Comments: 3385 J. Satran
// Category: Informational IBM
// P. Thaler
// V. Cavanna
// Agilent
// September 2002
//
//
// Internet Protocol Small Computer System Interface (iSCSI)
// Cyclic Redundancy Check (CRC)/Checksum Considerations
//
// Status of this Memo
//
// This memo provides information for the Internet community. It does
// not specify an Internet standard of any kind. Distribution of this
// memo is unlimited.
//
// Copyright Notice
//
// Copyright (C) The Internet Society (2002). All Rights Reserved.
//
// Abstract
//
// In this memo, we attempt to give some estimates for the probability
// of undetected errors to facilitate the selection of an error
// detection code for the Internet Protocol Small Computer System
// Interface (iSCSI).
//
// We will also attempt to compare Cyclic Redundancy Checks (CRCs) with
// other checksum forms (e.g., Fletcher, Adler, weighted checksums), as
// permitted by available data.
//
// 1. Introduction
//
// Cyclic Redundancy Check (CRC) codes [Peterson] are shortened cyclic
// codes used for error detection. A number of CRC codes have been
// adopted in standards: ATM, IEC, IEEE, CCITT, IBM-SDLC, and more
// [Baicheva]. The most important expectation from this kind of code is
// a very low probability for undetected errors. The probability of
// undetected errors in such codes has been, and still is, subject to
// extensive studies that have included both analytical models and
// simulations. Those codes have been used extensively in
// communications and magnetic recording as they demonstrate good "burst
// error" detection capabilities, but are also good at detecting several
// independent bit errors. Hardware implementations are very simple and
// well known; their simplicity has made them popular with hardware
//
//
//
//
// Sheinwald, et. al. Informational [Page 1]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// developers for many years. However, algorithms and software for
// effective implementations of CRC are now also widely available
// [Williams].
//
// The probability of undetected errors depends on the polynomial
// selected to generate the code, the error distribution (error model),
// and the data length.
//
// 2. Error Models and Goals
//
// We will analyze the code behavior under two conditions:
//
// - noisy channel - burst errors with an average length of n bits
// - low noise channel - independent single bit errors
//
// Burst errors are the prevalent natural phenomenon on communication
// lines and recording media. The numbers quoted for them revolve
// around the BER (bit error rate). However, those numbers are
// frequently nothing more than a reflection of the Burst Error Rate
// multiplied by the average burst length. In field engineering tests,
// three numbers are usually quoted together -- BER, error-free-seconds
// and severely-error-seconds; this illustrates our point.
//
// Even beyond communication and recording media, the effects of errors
// will be bursty. An example of this is a memory error that will
// affect more than a single bit and the total effect will not be very
// different from the communication error, or software errors that occur
// while manipulating packets will have a burst effect. Software errors
// also result in burst errors. In addition, serial internal
// interconnects will make this type of error the most common within
// machines as well.
//
// We also analyze the effects of single independent bit errors, since
// these may be caused by certain defects.
//
// On burst, we assume an average burst error duration of bd, which at a
// given transmission rate s, will result in an average burst of a =
// bd*s bits. (E.g., an average burst duration of 3 ns at 1Gbs gives an
// average burst of 3 bits.)
//
// For the burst error rate, we will take 10^-10. The numbers quoted
// for BER on wired communication channels are between 10^-10 to 10^-12
// and we consider the BER as burst-error-rate*average-burst-length.
// Nevertheless, please keep in mind that if the channel includes
// wireless links, the error rates may be substantially higher.
//
// For independent single bit errors, we assume a 10^-11 error rate.
//
//
//
//
// Sheinwald, et. al. Informational [Page 2]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// Because the error detection mechanisms will have to transport large
// amounts of data (petabytes=10^16 bits) without errors, we will target
// very low probabilities for undetected errors for all block lengths
// (at 10Gb/s that much data can be sent in less than 2 weeks on a
// single link).
//
// Alternatively, as iSCSI has to perform efficiently, we will require
// that the error detection capability of a selected protection
// mechanism be very good, at least up to block lengths of 8k bytes
// (64kbits).
//
// The error detection capability should keep the probability of
// undetected errors at values that would be "next-to-impossible". We
// recognize, however, that such attributes are hard to quantify and we
// resorted to physics. The value 10^23 is the Avogadro number while
// 10^45 is the number of atoms in the known Universe (or it was many
// years ago when we read about it) and those are the bounds of
// incertitude we could live with. (10^-23 at worst and 10^-45 if we
// can afford it.) For 8k blocks, the per/bit equivalent would be
// (10^-28 to 10^-50).
//
// 3. Background and Literature Survey
//
// Each codeword of a binary (n,k) CRC code C consists of n = k+r bits.
// The block of r parity bits is computed from the block of k
// information bits. The code has a degree r generator polynomial g(x).
//
// The code is linear in the sense that the bitwise addition of any two
// codewords yields a codeword.
//
// For the minimal m such that g(x) divides (x^m)-1, either n=m, and the
// code C comprises the set D of all the multiplications of g(x) modulo
// (x^m)-1, or n<m, and C is obtained from D by shortening each word in
// the latter in m-n specific positions. (This also reduces the number
// of words since all zero words are then discarded and duplicates are
// not maintained.)
//
// Error detection at the receiving end is made by computing the parity
// bits from the received information block, and comparing them with the
// received parity bits.
//
// An undetected error occurs when the received word c' is a codeword,
// but is different from the c that is transmitted.
//
// This is only possible when the error pattern e=c'-c is a codeword by
// itself (because of the linearity of the code). The performance of a
// CRC code is measured by the probability Pud of undetected channel
// errors.
//
//
//
// Sheinwald, et. al. Informational [Page 3]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// Let Ai denote the number of codewords of weight i, (i.e., with i 1-
// bits). For a binary symmetric channel (BSC), with sporadic,
// independent bit error ratio of probability 0<=epsilon<=0.5, the
// probability of undetected errors for the code C is thus given by:
//
// Pud(C,epsilon) = Sigma[for i=d to n] (Ai*(epsilon^i)*(1-epsilon)^(n-i))
//
// where d is the distance of the code: the minimal weight difference
// between two codewords in C which, by the linearity of the code, is
// also the minimal weight of any codeword in the code. Pud can also be
// expressed by the weight distribution of the dual code: the set of
// words each of which is orthogonal (bitwise AND yields an even number
// of 1-bits) to every word of C. The fact that Pud can be computed
// using the dual code is extremely important; while the number of
// codewords in the code is 2^k, the number of codewords in the dual
// code is 2^r. k is in the orders of thousands, and r in the order of
// 16 or 24 or 32. If we use Bi to denote the number of codewords in
// the dual code which are of weight i, then ([LinCostello]):
//
// Pud (C,epsilon) = 2^-r Sigma [for i=0 to n] Bi*(1-2*epsilon)^i -
// (1-epsilon)^n
//
// Wolf [Wolf94o] introduced an efficient algorithm for enumerating all
// the codewords of a code and finding their weight distribution.
//
// Wolf [Wolf82] found that, counter to what was assumed, (1) there
// exist codes for which Pud(C,epsilon)>Pud(C,0.5) for some epsilon
// not=0.5 and (2) Pud is not always increasing for 0<=epsilon<=0.5.
// The value of what was assumed to be the worst Pud is Pud(C,0.5)=(2^-
// r) - (2^-n). This stems from the fact that with epsilon=0.5, all 2^n
// received words are equally likely and out of them 2^(n-r)-1 will be
// accepted as codewords of no errors, although they are different from
// the codeword transmitted. Previously Pud had been assumed to equal
// [2^(n-r)-1]/(2^n-1) or the ratio of the number of non-zero multiples
// of the polynomial of degree less than n (each such multiple is
// undetected) and the number of possible error polynomials. With
// either formula Pud approaches 1/2^r as n approaches infinity, but
// Wolf's formula is more accurate.
//
// Wolf [Wolf94j] investigated the CCITT code of r=16 parity bits. This
// code is a member of the family of (shortened codes of) BCH codes of
// length 2^(r-1) -1 (r=16 in the CCITT 16-bit case) generated by a
// polynomial of the form g(x) =(x+1)p(x) with p(x) being a primitive
// polynomial of degree r-1 (=15 in this case). These codes have a BCH
// design distance of 4. That is, the minimal distance between any two
// codewords in the code is at least 4 bits (which is earned by the fact
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 4]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// that the sequence of powers of alpha, the root of p(x), which are
// roots of g(x), includes three consecutive powers -- alpha^0, alpha^1,
// alpha^2). Hence, every 3 single bit errors are detectable.
//
// Wolf found that different shortened versions of a given code, of the
// same codeword length, perform the same (independent of which specific
// indexes are omitted from the original code). He also found that for
// the unshortened codes, all primitive polynomials yield codes of the
// same performance. But for the shortened versions, the choice of the
// primitive polynomial does make a difference. Wolf [Wolf94j] found a
// primitive polynomial which (when multiplied by x+1) yields a
// generating polynomial that outperforms the CCITT one by an order of
// magnitude. For 32-bit redundancy bits, he found an example of two
// polynomials that differ in their probability of undetected burst of
// length 33 by 4 orders of magnitude.
//
// It so happens, that for some shortened codes, the minimum distance,
// or the distribution of the weights, is better than for others derived
// from different unshortened codes.
//
// Baicheva, et. al. [Baicheva] made a comprehensive comparison of
// different generating polynomials of degree 16 of the form g(x) =
// (x+1)p(x), and of other forms. They computed their Pud for code
// lengths up to 1024 bits. They measured their "goodness" -- if
// Pud(C,epsilon) <= Pud(C,0.5) and being "well-behaved" -- if
// Pud(C,epsilon) increases with epsilon in the range (0,0.5). The
// paper gives a comprehensive table that lists which of the polynomials
// is good and which is well-behaved for different length ranges.
//
// For a single burst error, Wolf [Wolf94J] suggested the model of (b:p)
// burst -- the errors only occur within a span of b bits, and within
// that span, the errors occur randomly, with a bit error probability 0
// <= p <= 1.
//
// For p=0.5, which used to be considered the worst case, it is well
// known [Wolf94J] that the probability of undetected one burst error of
// length b <= r is 0, of length b=r+1 is 2^-(r-1), and of b > r+1, is
// 2^-r, independently of the choice of the primitive polynomial.
//
// With Wolf's definition, where p can be different from 0.5, indeed it
// was found that for a given b there are values of p, different from
// 0.5 which maximize the probability of undetected (b:p) burst error.
//
//
//
//
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 5]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// Wolf proved that for a given code, for all b in the range r < b < n,
// the conditional probability of undetected error for the (n, n-r)
// code, given that a (b:p) burst occurred, is equal to the probability
// of undetected errors for the same code (the same generating
// polynomial), shortened to block length b, when this shortened code is
// used with a binary symmetric channel with channel (sporadic,
// independent) bit error probability p.
//
// For the IEEE-802.3 used CRC32, Fujiwara et al. [Fujiwara89] measured
// the weights of all words of all shortened versions of the IEEE 802.3
// code of 32 check bits. This code is generated by a primitive
// polynomial of degree 32:
//
// g(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 +
// x^7 + x^5 + x^4 + x^2 + x + 1 and hence the designed distance of it
// is only 3. This distance holds for codes as long as 2^32-1.
// However, the frame format of the MAC (Media Access Control) of the
// data link layer in IEEE 802.3, as well as that of the data link layer
// for the Ethernet (1980) forbid lengths exceeding 12,144 bits. Thus,
// only such bounded lengths are investigated in [Fujiwara89]. For
// shortened versions, the minimum distance was found to be 4 for
// lengths 4096 to 12,144; 5 for lengths 512 to 2048; and even 15 for
// lengths 33 through 42. A chart of results of calculations of Pud is
// presented in [Fujiwara89] from which we can see that for codes of
// length 12,144 and BSC of epsilon = 10^-5 - 10^-4,
// Pud(12,144,epsilon)= 10^-14 - 10^-13 and for epsilon = 10^-4 - 10^-3,
// Pud(512,epsilon) = 10^-15, Pud(1024,epsilon) = 10^-14,
// Pud(2048,epsilon) = 10^-13, Pud(4096,epsilon) = 10^-12 - 10^-11, and
// Pud(8192,epsilon) = 10^-10 which is rather close to 2^-32.
//
// Castagnoli, et. al. [Castagnoli93] extended Fujiwara's technique for
// efficiently calculating the minimum distance through the weight
// distribution of the dual code and explored a large number of CRC
// codes with 24 and 32 redundancy bit. They explored several codes
// built as a multiplication of several lower degree irreducible
// polynomials.
//
// In the popular class of (x+1)*deg31-irreducible-polynomial they
// explored 47000 polynomials (not all the possible ones). The best
// they found has d=6 up to block lengths of 5275 and d=4 up to 2^31-1
// (bits).
//
// The investigation was done in 1993 with a special purpose processor.
//
// By comparison, the IEEE-802 code has d=4 up to at least 64,000 bits
// (Fujikura stopped looking at 12,144) and d=3 up to 2^32-1 bits.
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 6]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// CRC32/4 (we will refer to it as CRC32C for the remainder of this
// memo) is 11EDC6F41; IEEE-802 CRC is 104C11DB7, denoting the
// coefficients as a bit vector.
//
// [Stone98] evaluated the performance of CRC (the AAL5 CRC that is the
// same as IEEE802) and the TCP and Fletcher checksums on large amounts
// of data. The results of this experiment indicate a serious weakness
// of the checksums on real-data that stems from the fact that checksums
// do not spread the "hot spots" in input data. However, the results
// show that Fletcher behaves by a factor of 2 better than the regular
// TCP checksum.
//
// 4. Probability of Undetected Errors - Burst Error
//
// 4.1 CRC32C (Derivations from [Wolf94j])
//
// Wolf [Wolf94j] found a 32-bit polynomial of the form g(x) = (1+x)p(x)
// for which the conditional probability of undetected error, given that
// a burst of length 33 occurred, is at most (i.e., maximized over all
// possible channel bit error probabilities within the burst) 4 * 10^-
// 10.
//
// We will now figure the probability of undetected error, given that a
// burst of length 34 occurred, using the result derived in this paper,
// namely that for a given code, for all b in the range 32 < b < n, the
// conditional probability of undetected error for the (n, n-32) code,
// given that a (b:p) burst occurred, is equal to the probability of
// undetected errors for the same code (the same generating polynomial),
// shortened to block length b, when this shortened code is used with a
// binary symmetric channel with channel (sporadic, independent) bit
// error probability p.
//
// The approximation formula for Pud of sporadic errors, if the weights
// Ai are distributed binomially, is:
//
// Pud(C, epsilon) =~= Sigma[for i=d to n] ((n choose i) / 2^r )*(1-
// epsilon)^(n-i) * epsilon^i .
//
// Assuming a very small epsilon, this expression is dominated by i=d.
// From [Fujiwara89] we know that for 32-bit CRC, for such small n,
// d=15. Thus, when n grows from 33 to 34, we find that the
// approximation of Pud grows by (34 choose 15) / (33 choose 15) =
// 34/19; when n grows further to 35, Pud grows by another 35/20.
//
// Taking, from Wolf [Wolf94j], the most generous conditional
// probability, computed with the bit error probability p* that
// maximizes Pub(p|b), we derive: Pud(p*|33) = 4 x 10^{-10}, yielding
// Pud(p*|34) = 7.15 x 10^{-10} and Pud(p*|35) = 1.25 x 10^{-9}.
//
//
//
// Sheinwald, et. al. Informational [Page 7]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// For the density function of the burst length, we assume the Rayleigh
// density function (the discretization thereof to integers), which is
// the density of the absolute values of complex numbers of Gauss
// distribution:
//
// f(x) = x / a^2 exp {-x^2 / 2a^2 } , x>0 .
//
// This density function has a peak at the parameter a and it decreases
// smoothly as x increases.
//
// We take three consecutive bits as the most common burst event once an
// error does occur, and thus a=3.
//
// Now, the probability that a burst of length b occurs in a specific
// position is the burst error rate, which we estimate as 10^{-10},
// times f(b). Calculating for b=33 we find f(33) = 1.94 x 10^{-26}.
// Together, we found that the probability that a burst of length 33
// occurred, starting at a specific position, is 1.94 x 10^{-36}.
//
// Multiplying this by the generous upper bound on the probability that
// this burst error is not detected, Pud(p*|33), we get that the
// probability that a burst occurred at a specific position, and is not
// detected, is 7.79 x 10 ^{-46}.
//
// Going again along this path of calculations, this time for b=34 we
// find that f(34) = 4.85*10^{-28}. Multiplying by 10^{-10} and by
// Pud(p*|34) = 7.15*10^{-10} we find that the probability that a burst
// of length 34 occurred at a specific position, and is not detected, is
// 3.46*10^{-47}.
//
// Last, computing for b=35, we get 1*10^{-29} * 10^{-10} * 1.25*10^{-9}
// = 1.25*10^{-48}.
//
// It looks like the total can be approximated at 10^-45 which is within
// the bounds of what we are looking for.
//
// When we multiply this by the length of the code (because thus far we
// calculated for a specific position) we have 10^-45 * 6.5*10^4 =
// 6.5*10^-41 as an upper bound on the probability of undetected burst
// error for a code of length 8K Bytes.
//
// We can also apply this overestimation for IEEE 802.3.
//
// Comment: 2^{-32} = 2.33*10^{-10}.
//
//
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 8]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// 5. Probability of Undetected Errors - Independent Errors
//
// 5.1 CRC (Derivations from [Castagnoli93])
//
// It is reported in [Castagnoli93] that for BER = epsilon=10^-6, Pud
// for a single bit error, for a code of length 8KB, for both cases,
// IEEE-802.3 and CRC32C is 10^{-20}. They also report that CRC32C has
// distance 4, and IEEE either 3 or 4 for this code length. From this,
// and the minimum distance of the code of this length, we conclude that
// with our estimation of epsilon, namely 10^{-11}, we should multiply
// the reported result by {10^{-5}}^4 = 10^{-20} for CRC32C, and either
// 10^{-15} or 10^{-20} for IEEE802.3.
//
// 5.2 Checksums
//
// For independent bit errors, Pud of CRC is approximately 12,000 better
// than Fletcher, and 22,000 better than Adler. For burst errors, by
// the simple examples that exist for three consecutive values that can
// produce an undetected burst, we take the factor to be at least the
// same.
//
// If in three consecutive bytes, the error values are x, -2x, x then
// the error is undetected. Even for this error pattern alone, the
// conditional probability of undetected error, assuming a uniform
// distribution of data, is 2^-16 = 1.5 * 10^-5. The probability that a
// burst of length 3 bytes occurs, is f(24) = 3*10^-14. Together:
// 4.5*10^-19. Multiplying this by the length of the code, we get close
// to 4.5*10^-16, way worse than the vicinity of 10^-40.
//
// The numbers in the table in Section 7 below reflect a more "tolerant"
// difference (10*4).
//
// 6. Incremental CRC Updates
//
// In some protocols the packet header changes frequently. If the CRC
// includes the changing part, the CRC will have to be recomputed. This
// raises two issues:
//
// - the complete computation is expensive
// - the packet is not protected against unwanted changes
// between the last check and the recomputation
//
// Fortunately, changes in the header do not imply a need for completed
// CRC computation. The reason is the linearity of the CRC function.
// Namely, with I1 and I2 denoting two equal-length blocks of
// information bits, CRC(I) denoting the CRC check bits calculated for
// I, and + denoting bitwise modulo-2 addition, we have CRC(I1+I2) =
// CRC(I1)+CRC(I2).
//
//
//
// Sheinwald, et. al. Informational [Page 9]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// Hence, for an IP packet, made of a header h followed by data d
// followed by CRC bits c = CRC(h d), arriving at a node, which updates
// header h to become h', the implied update of c is an addition of
// CRC(h'-h 0), where 0 is an all 0 block of the length of the data
// block d, and addition and subtraction are bitwise modulo 2.
//
// We know that a predetermined permutation of bits does not change
// distance and weight statistics of the codewords. It follows that
// such a transformation does not change the probability of undetected
// errors.
//
// We can then conceive the packet as if it was built from data d
// followed by header h, compute the CRC accordingly, c=CRC(d h), and
// update at the node with an addition of CRC(0 h'-h)=CRC(h'-h), but on
// transmission, send the header part before the data and the CRC bits.
// This will allow a faster computation of the CRC, while still letting
// the header part lead (no change to the protocol).
//
// Error detection, i.e., computing the CRC bits by the data and header
// parts that arrive, and comparing them with the CRC part that arrives
// together with them, can be done at the final, end-target node only,
// and the detected errors will include unwanted changes introduced by
// the intermediate nodes.
//
// The analysis of the undetected error probability remains valid
// according to the following rationale:
//
// The packet started its way as a codeword. On its way, several
// codewords were added to it (any information followed by the
// corresponding CRC is a codeword). Let e denote the totality of
// errors added to the packet, on its long, multi-hop journey. Because
// the code is linear (i.e., the sum of two codewords is also a
// codeword) the packet arriving to the end-target node is some codeword
// + e, and hence, as in our preceding analysis, e is undetected if and
// only if it is a codeword by itself. This fact is the basis of our
// above analysis, and hence that analysis applies here too. (See a
// detailed discussion at [braun01].)
//
// 7. Complexity of Hardware Implementation
//
// Comparing the cost of various CRC polynomials, we used a tool
// available at http://www.easics.com/webtools/crctool to implement CRC
// generators/checkers for various CRC polynomials. The program gives
// either Verilog or VHDL code after specifying a polynomial, as well as
// the number of data bits, k, to be handled in one clock cycle. For a
// serial implementation, k would be one.
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 10]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// The cost for either one generator or checker is shown in the
// following table.
//
// The number of 2-input XOR gates, for an un-optimized implementation,
// required for various values of k:
//
// +----------------------------------------------+
// | Polynomial | k=32 | k=64 | k=128 |
// +----------------------------------------------+
// | CCITT-CRC32 | 488 | 740 | 1430 |
// +----------------------------------------------+
// | IEEE-802 | 872 | 1390 | 2518 |
// +----------------------------------------------+
// | CRC32Q(Wolf)| 944 | 1444 | 2534 |
// +----------------------------------------------+
// | CRC32C | 1036 | 1470 | 2490 |
// +----------------------------------------------+
//
// After optimizing (sharing terms) and in terms of Cells (4 cells per 2
// input AND, 7 cells per 2 input XOR, 3 cells per inverter) the cost
// for two candidate polynomials is shown in the following table.
//
// +-----------------------------------+
// | Polynomial | k=32 | k=64 |
// +-----------------------------------+
// | CCITT-CRC32 | 1855 | 3572 |
// +-----------------------------------+
// | CRC32C | 4784 | 7111 |
// +-----------------------------------+
//
// For 32-bit datapath, CCITT-CRC32 requires 40% of the number of cells
// required by the CRC32C. For a 64-bit datapath, CCITT-CRC32 requires
// 50% of the number of cells.
//
// The total size of one of our smaller chips is roughly 1 million
// cells. The fraction represented by the CRC circuit is less than 1%.
//
// 8. Implementation of CRC32C
//
// 8.1 A Serial Implementation in Hardware
//
// A serial implementation that processes one data bit at a time and
// performs simultaneous multiplication of the data polynomial by x^32
// and division by the CRC32C polynomial is described in the following
// Verilog [ieee1364] code.
//
//
//
//
//
//
// Sheinwald, et. al. Informational [Page 11]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// /////////////////////////////////////////////////////////////////////
// //File: CRC32_D1.v
// //Date: Tue Feb 26 02:47:05 2002
// //
// //Copyright (C) 1999 Easics NV.
// //This source file may be used and distributed without restriction
// //provided that this copyright statement is not removed from the file
// //and that any derivative work contains the original copyright notice
// //and the associated disclaimer.
// //
// //THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
// //OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
// //WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
// //
// //Purpose: Verilog module containing a synthesizable CRC function
// //* polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32)
// //* data width: 1
// //
// //Info: [email protected] (Jan Decaluwe)
// //http://www.easics.com
// /////////////////////////////////////////////////////////////////////
// module CRC32_D1;
// // polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32)
// // data width: 1
// function [31:0] nextCRC32_D1;
// input Data;
// input [31:0] CRC;
// reg [0:0] D;
// reg [31:0] C;
// reg [31:0] NewCRC;
// begin
// D[0] = Data;
// C = CRC;
// NewCRC[0] = D[0] ^ C[31];
// NewCRC[1] = D[0] ^ C[0] ^ C[31];
// NewCRC[2] = D[0] ^ C[1] ^ C[31];
// NewCRC[3] = C[2];
// NewCRC[4] = D[0] ^ C[3] ^ C[31];
// NewCRC[5] = D[0] ^ C[4] ^ C[31];
// NewCRC[6] = C[5];
// NewCRC[7] = D[0] ^ C[6] ^ C[31];
// NewCRC[8] = D[0] ^ C[7] ^ C[31];
// NewCRC[9] = C[8];
// NewCRC[10] = D[0] ^ C[9] ^ C[31];
// NewCRC[11] = D[0] ^ C[10] ^ C[31];
// NewCRC[12] = D[0] ^ C[11] ^ C[31];
// NewCRC[13] = C[12];
// NewCRC[14] = C[13];
//
//
//
// Sheinwald, et. al. Informational [Page 12]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// NewCRC[15] = C[14];
// NewCRC[16] = D[0] ^ C[15] ^ C[31];
// NewCRC[17] = C[16];
// NewCRC[18] = C[17];
// NewCRC[19] = C[18];
// NewCRC[20] = C[19];
// NewCRC[21] = C[20];
// NewCRC[22] = D[0] ^ C[21] ^ C[31];
// NewCRC[23] = D[0] ^ C[22] ^ C[31];
// NewCRC[24] = C[23];
// NewCRC[25] = C[24];
// NewCRC[26] = D[0] ^ C[25] ^ C[31];
// NewCRC[27] = C[26];
// NewCRC[28] = C[27];
// NewCRC[29] = C[28];
// NewCRC[30] = C[29];
// NewCRC[31] = C[30];
// nextCRC32_D1 = NewCRC;
// end
// endfunction
// endmodule
//
// 8.2 A Parallel Implementation in Hardware
//
// A parallel implementation that processes 32 data bits at a time is
// described in the following Verilog [ieee1364] code. In software
// implementations, the next state logic is typically implemented by
// means of tables indexed by the input and the current state.
//
// /////////////////////////////////////////////////////////////////////
// //File: CRC32_D32.v
// //Date: Tue Feb 26 02:50:08 2002
// //
// //Copyright (C) 1999 Easics NV.
// //This source file may be used and distributed without restriction
// //provided that this copyright statement is not removed from the file
// //and that any derivative work contains the original copyright notice
// //and the associated disclaimer.
// //
// //THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
// //OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
// //WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
// //
// //Purpose: Verilog module containing a synthesizable CRC function
// //* polynomial: p(0 to 32) := "100000101111011000111011011110001"
// //* data width: 32
// //
// //Info: [email protected] (Jan Decaluwe)
//
//
//
// Sheinwald, et. al. Informational [Page 13]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// //http://www.easics.com
// /////////////////////////////////////////////////////////////////////
// module CRC32_D32;
// // polynomial: p(0 to 32) := "100000101111011000111011011110001"
// // data width: 32
// // convention: the first serial data bit is D[31]
// function [31:0] nextCRC32_D32;
// input [31:0] Data;
// input [31:0] CRC;
// reg [31:0] D;
// reg [31:0] C;
// reg [31:0] NewCRC;
// begin
// D = Data;
// C = CRC;
// NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^ D[23]
// ^
// D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[12] ^ D[9] ^ D[8] ^
// D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^
// C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[12] ^ C[16] ^ C[17] ^
// C[18] ^ C[21] ^ C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^
// C[30] ^ C[31];
// NewCRC[1] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[26] ^ D[24] ^ D[22]
// ^
// D[19] ^ D[18] ^ D[17] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^
// D[7] ^ D[6] ^ D[5] ^ D[1] ^ C[1] ^ C[5] ^ C[6] ^ C[7] ^
// C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[17] ^ C[18] ^ C[19] ^
// C[22] ^ C[24] ^ C[26] ^ C[27] ^ C[28] ^ C[29] ^ C[31];
// NewCRC[2] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[23] ^ D[20]
// ^
// D[19] ^ D[18] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^
// D[7] ^ D[6] ^ D[2] ^ C[2] ^ C[6] ^ C[7] ^ C[8] ^ C[9] ^
// C[10] ^ C[11] ^ C[14] ^ C[18] ^ C[19] ^ C[20] ^ C[23] ^
// C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30];
// NewCRC[3] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[24] ^ D[21]
// ^
// D[20] ^ D[19] ^ D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
// D[8] ^ D[7] ^ D[3] ^ C[3] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^
// C[11] ^ C[12] ^ C[15] ^ C[19] ^ C[20] ^ C[21] ^ C[24] ^
// C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
// NewCRC[4] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[25] ^ D[22] ^ D[21]
// ^
// D[20] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
// D[8] ^ D[4] ^ C[4] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
// C[12] ^ C[13] ^ C[16] ^ C[20] ^ C[21] ^ C[22] ^ C[25] ^
// C[27] ^ C[29] ^ C[30] ^ C[31];
// NewCRC[5] = D[31] ^ D[30] ^ D[28] ^ D[26] ^ D[23] ^ D[22] ^ D[21]
// ^
//
//
//
// Sheinwald, et. al. Informational [Page 14]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
// D[5] ^ C[5] ^ C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^
// C[14] ^ C[17] ^ C[21] ^ C[22] ^ C[23] ^ C[26] ^ C[28] ^
// C[30] ^ C[31];
// NewCRC[6] = D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[22]
// ^
// D[21] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ D[11] ^
// D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^
// C[4] ^ C[5] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
// C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[21] ^ C[22] ^
// C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30];
// NewCRC[7] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23]
// ^
// D[22] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[12] ^
// D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^ D[5] ^ D[1] ^
// C[1] ^ C[5] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
// C[12] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[22] ^
// C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30] ^ C[31];
// NewCRC[8] = D[25] ^ D[24] ^ D[21] ^ D[19] ^ D[15] ^ D[13] ^ D[11]
// ^
// D[10] ^ D[8] ^ D[5] ^ D[4] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^
// C[4] ^ C[5] ^ C[8] ^ C[10] ^ C[11] ^ C[13] ^ C[15] ^
// C[19] ^ C[21] ^ C[24] ^ C[25];
// NewCRC[9] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[23] ^ D[22] ^ D[21]
// ^
// D[20] ^ D[18] ^ D[17] ^ D[14] ^ D[11] ^ D[8] ^ D[7] ^
// D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[4] ^
// C[7] ^ C[8] ^ C[11] ^ C[14] ^ C[17] ^ C[18] ^ C[20] ^
// C[21] ^ C[22] ^ C[23] ^ C[27] ^ C[28] ^ C[30] ^ C[31];
// NewCRC[10] = D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[24] ^
// D[22] ^
// D[19] ^ D[17] ^ D[16] ^ D[15] ^ D[7] ^ D[6] ^ D[2] ^
// D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[6] ^ C[7] ^ C[15] ^
// C[16] ^ C[17] ^ C[19] ^ C[22] ^ C[24] ^ C[25] ^ C[26] ^
// C[27] ^ C[29] ^ C[30];
// NewCRC[11] = D[21] ^ D[20] ^ D[12] ^ D[9] ^ D[6] ^ D[5] ^ D[4] ^
// D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[3] ^
// C[4] ^ C[5] ^ C[6] ^ C[9] ^ C[12] ^ C[20] ^ C[21];
// NewCRC[12] = D[22] ^ D[21] ^ D[13] ^ D[10] ^ D[7] ^ D[6] ^ D[5] ^
// D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^
// C[5] ^ C[6] ^ C[7] ^ C[10] ^ C[13] ^ C[21] ^ C[22];
// NewCRC[13] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^
// D[22] ^
// D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[14] ^ D[12] ^ D[11] ^
// D[9] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[9] ^
// C[11] ^ C[12] ^ C[14] ^ C[16] ^ C[17] ^ C[18] ^ C[21] ^
// C[22] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^ C[30] ^ C[31];
// NewCRC[14] = D[30] ^ D[29] ^ D[25] ^ D[22] ^ D[21] ^ D[19] ^
//
//
//
// Sheinwald, et. al. Informational [Page 15]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// D[16] ^
// D[15] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^
// D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^
// C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[15] ^
// C[16] ^ C[19] ^ C[21] ^ C[22] ^ C[25] ^ C[29] ^ C[30];
// NewCRC[15] = D[31] ^ D[30] ^ D[26] ^ D[23] ^ D[22] ^ D[20] ^
// D[17] ^
// D[16] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^
// D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^
// C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ C[14] ^ C[16] ^
// C[17] ^ C[20] ^ C[22] ^ C[23] ^ C[26] ^ C[30] ^ C[31];
// NewCRC[16] = D[31] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^ D[18] ^
// D[17] ^
// D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^
// D[5] ^ D[3] ^ D[2] ^ C[2] ^ C[3] ^ C[5] ^ C[7] ^ C[8] ^
// C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[15] ^ C[17] ^ C[18] ^
// C[21] ^ C[23] ^ C[24] ^ C[27] ^ C[31];
// NewCRC[17] = D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[19] ^ D[18] ^
// D[16] ^
// D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^
// D[4] ^ D[3] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^
// C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^ C[19] ^ C[22] ^
// C[24] ^ C[25] ^ C[28];
// NewCRC[18] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[21] ^
// D[20] ^
// D[19] ^ D[18] ^ D[16] ^ D[14] ^ D[13] ^ D[11] ^ D[10] ^
// D[8] ^ D[6] ^ D[0] ^ C[0] ^ C[6] ^ C[8] ^ C[10] ^ C[11] ^
// C[13] ^ C[14] ^ C[16] ^ C[18] ^ C[19] ^ C[20] ^ C[21] ^
// C[27] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
// NewCRC[19] = D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23] ^ D[22] ^
// D[20] ^
// D[19] ^ D[18] ^ D[16] ^ D[15] ^ D[14] ^ D[11] ^ D[8] ^
// D[6] ^ D[5] ^ D[4] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[4] ^
// C[5] ^ C[6] ^ C[8] ^ C[11] ^ C[14] ^ C[15] ^ C[16] ^
// C[18] ^ C[19] ^ C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[26] ^
// C[27] ^ C[29];
// NewCRC[20] = D[31] ^ D[25] ^ D[24] ^ D[20] ^ D[19] ^ D[18] ^
// D[15] ^
// D[8] ^ D[4] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^
// C[4] ^ C[8] ^ C[15] ^ C[18] ^ C[19] ^ C[20] ^ C[24] ^
// C[25] ^ C[31];
// NewCRC[21] = D[26] ^ D[25] ^ D[21] ^ D[20] ^ D[19] ^ D[16] ^ D[9]
// ^
// D[5] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[5] ^
// C[9] ^ C[16] ^ C[19] ^ C[20] ^ C[21] ^ C[25] ^ C[26];
// NewCRC[22] = D[31] ^ D[30] ^ D[28] ^ D[25] ^ D[23] ^ D[22] ^
// D[20] ^
// D[18] ^ D[16] ^ D[12] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^
//
//
//
// Sheinwald, et. al. Informational [Page 16]
//
// RFC 3385 iSCSI CRC Considerations September 2002
//
//
// D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[5] ^
// C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[12] ^ C[16] ^ C[18] ^
// C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[28] ^ C[30] ^ C[31];
// NewCRC[23] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^
// D[19] ^
// D[18] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[7] ^
// D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^
// C[7] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^
// C[19] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30];
// NewCRC[24] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^
// D[20] ^
// D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[8] ^
// D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^
// C[8] ^ C[11] ^ C[12] ^ C[13] ^ C[14] ^ C[17] ^ C[19] ^
// C[20] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
// NewCRC[25] = D[29] ^ D[28] ^ D[25] ^ D[23] ^ D[20] ^ D[17] ^
// D[16] ^
// D[15] ^ D[14] ^ D[13] ^ D[8] ^ D[6] ^ D[4] ^ D[3] ^
// D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^
// C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[20] ^ C[23] ^
// C[25] ^ C[28] ^ C[29];
// NewCRC[26] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^
// D[23] ^
// D[15] ^ D[14] ^ D[12] ^ D[8] ^ D[6] ^ D[3] ^ D[1] ^
// D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[6] ^ C[8] ^ C[12] ^ C[14] ^
// C[15] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^
// C[31];
// NewCRC[27] = D[31] ^ D[29] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^
// D[18] ^
// D[17] ^ D[15] ^ D[13] ^ D[12] ^ D[8] ^ D[6] ^ D[5] ^
// D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[5] ^ C[6] ^
// C[8] ^ C[12] ^ C[13] ^ C[15] ^ C[17] ^ C[18] ^ C[21] ^
// C[23] ^ C[24] ^ C[27] ^ C[29] ^ C[31];
// NewCRC[28] = D[31] ^ D[27] ^ D[26] ^ D[24] ^ D[23] ^ D[22] ^
// D[21] ^
// D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[8] ^ D[5] ^
// D[4] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^
// C[3] ^ C[4] ^ C[5] ^ C[8] ^ C[12] ^ C[13] ^ C[14] ^
// C[17] ^ C[19] ^ C[21] ^ C[22] ^ C[23] ^ C[24] ^ C[26] ^
// C[27] ^ C[31];
// NewCRC[29] = D[28] ^ D[27] ^ D[25] ^ D[24] ^ D[23] ^ D[22] ^
// D[20] ^
// D[18] ^ D[15] ^ D[14] ^ D[13] ^ D[9] ^ D[6] ^ D[5] ^
// D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^
// C[5] ^ C[6] ^ C[9] ^ C[13] ^ C[14] ^ C[15] ^ C[18] ^
// C[20] ^ C[22] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28];
// NewCRC[30] = D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[23] ^
// D[21] ^
//