forked from singer-yang/Aberration-Aware-Depth-from-Focus
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path0_warm_up_with_pfm.py
41 lines (32 loc) · 1.62 KB
/
0_warm_up_with_pfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import cv2 as cv
from deeplens.psfnet import PSFNet
from torchvision.utils import save_image
from pfmreader import read_and_clean_pfm
if __name__ == "__main__":
# Load lens and PSFNet
psfnet = PSFNet(filename='./lenses/rf50mm/lens.json', sensor_res=(480, 640), kernel_size=11)
psfnet.load_net('./ckpt/rf50mm/PSFNet480x640_ks11.pkl')
psfnet.analysis()
# Read image with using disp.pfm
img = cv.resize(cv.cvtColor(cv.imread('./datasets/Middlebury2014/Adirondack-perfect/im0.png'), cv.COLOR_BGR2RGB), (640, 480))
img = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float() / 255
disp = read_and_clean_pfm('./datasets/Middlebury2014/Adirondack-perfect/disp0.pfm')
disp = cv.resize(disp, (640, 480))
disp = torch.tensor(disp).unsqueeze(0).unsqueeze(0).float()
print("disp in pixel:",disp)
# Important: to convert from the floating-point disparity value d [pixels] in the .pfm file to depth Z [mm] the
# following equation can be used: Z = f * baseline / (d + doffs)
# these datas can be found in datasets/Middlebury2014/Adirondack-perfect/calib.txt
base_line = 176.252
doffs = 209.059
fx = 4161.221
depth_map = fx * base_line / (disp + doffs)
depth_map = -depth_map
# Output the depth value
print("Calculated depth in mm:", depth_map)
focus_dist = torch.tensor([-2000.]) # unit [mm]
# Render an image
defocused_img = psfnet.render(img.to(psfnet.device), depth_map.to(psfnet.device), focus_dist.to(psfnet.device))
save_image(defocused_img, 'results/aberrated_defocused_img_2000.png')
save_image(img, 'results/all_in_focus_img.png')