forked from CMSDIJET/DijetLimitCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stats.cc
552 lines (459 loc) · 23.3 KB
/
stats.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#include <iostream>
#include <cmath>
#include <cassert>
#include <sstream>
#include <TGraph.h>
#include <TFile.h>
#include <TH1D.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TMath.h>
#include <TROOT.h>
#include <TVectorD.h>
#include <TMatrixD.h>
#include <TMatrixDSym.h>
#include <TMatrixDSymEigen.h>
#include <BAT/BCLog.h>
#include "binneddata.hh"
#include "fit.hh"
#include "statistics.hh"
using namespace std;
//##################################################################################################################################
// User Section 1
//
// (Change the code outside the User Sections only if you know what you are doing)
//
////////////////////////////////////////////////////////////////////////////////
// magic numbers
////////////////////////////////////////////////////////////////////////////////
// use Markov chain Monte Carlo (MCMC) to marginalize nuisance parameters
const int useMCMC = 0;
// IMPORTANT: With useMCMC = 1, the systematic uncertanties are included in the limit calculation by default. Use the PAR_NUIS[] array below to control what uncertainties are included
// number of samples of nuisance parameters for Bayesian MC integration
const int NSAMPLES=0; // 10000 (larger value is better but it also slows down the code. 10000 is a reasonable compromise between the speed and precision)
// IMPORTANT: With useMCMC = 0, the systematic uncertanties are included in the limit calculation only when NSAMPLES is greater than 0. Use the PAR_NUIS[] array below to control what uncertainties are included
// number of pseudoexperiments (when greater than 0, expected limit with +/- 1 and 2 sigma bands is calculated)
int NPES=0; // 200 (the more pseudo-experiments, the better. However, 200 is a reasonable choice)
// calculate significance estimator Sig = sgn(S)*sqrt{-2ln[L(B)/L(S+B)]}
const int calcSig = 0; // needs to be set to 0 for limit calculation
// use 6-parameter background fit function
const bool use6ParFit = 0;
// set the factor that defines the upper bound for the signal xs used by the MCMC as xsUpperBoundFactor*stat-only_limit
const double xsUpperBoundFactor=3.0;
// alpha (1-alpha=confidence interval)
const double ALPHA=0.05;
// left side tail
const double LEFTSIDETAIL=0.0;
// output file name
const string OUTPUTFILE="stats.root";
// center-of-mass energy
const double sqrtS = 13000.;
// histogram binning
const int NBINS=50;
double BOUNDARIES[NBINS+1] = { 1118, 1181, 1246, 1313, 1383, 1455, 1530, 1607, 1687,
1770, 1856, 1945, 2037, 2132, 2231, 2332, 2438, 2546,
2659, 2775, 2895, 3019, 3147, 3279, 3416, 3558, 3704,
3854, 4010, 4171, 4337, 4509, 4686, 4869, 5058, 5253,
5455, 5663, 5877, 6099, 6328, 6564, 6808, 7060, 7320,
7589, 7866, 8152, 8447, 8752, 9067 };
// parameters
double SIGMASS=0;
const int NPARS=16;
const int NBKGPARS=(use6ParFit ? 6 : 4);
const int POIINDEX=0; // which parameter is "of interest"
string PAR_NAMES[NPARS] = { "xs", "lumi", "jes", "jer", "p0", "p1", "p2", "p3", "p4", "p5", "n0", "n1", "n2", "n3", "n4", "n5" };
double PAR_GUESSES[NPARS] = { 1E-3, 1000., 1.0, 1.0, 6.99137e-03, 7.63335e+00, 5.46640e+00, 2.31555e-02, 0., 0., 0, 0, 0, 0, 0, 0 };
double PAR_MIN[NPARS] = { 0, 0.0, 0.0, 0.0, -1E4, -9999, -9999, -9999, -9999, -9999, -100, -100, -100, -100, -100, -100 };
double PAR_MAX[NPARS] = { 1E3, 5E3, 2.0, 2.0, 1E4, 9999, 9999, 9999, 9999, 9999, 100, 100, 100, 100, 100, 100 };
double PAR_ERR[NPARS] = { 1E-3, 26., 0.01, 0.10, 1e-04, 1e-01, 1e-01, 1e-03, 1e-02, 1e-03, 1, 1, 1, 1, 1, 1 };
int PAR_TYPE[NPARS] = { 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3 }; // // 1,2 = signal (2 not used in the fit); 0,3 = background (3 not used in the fit)
int PAR_NUIS[NPARS] = { 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4 }; // 0 = not varied, >=1 = nuisance parameters with different priors (1 = Lognormal, 2 = Gaussian, 3 = Gamma, >=4 = Uniform)
//int PAR_NUIS[NPARS] = { 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4 }; // all (same as above)
//int PAR_NUIS[NPARS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // none
//int PAR_NUIS[NPARS] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // lumi only
//int PAR_NUIS[NPARS] = { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // jes only
//int PAR_NUIS[NPARS] = { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // jer only
//int PAR_NUIS[NPARS] = { 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // all except background
//int PAR_NUIS[NPARS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4 }; // background only
//
// End of User Section 1
//##################################################################################################################################
// input files vector
vector<string> INPUTFILES;
// covariance matrix
double COV_MATRIX[NPARS][NPARS];
TMatrixDSym covMatrix = TMatrixDSym(NBKGPARS);
TVectorD eigenValues = TVectorD(NBKGPARS);
TMatrixD eigenVectors = TMatrixD(NBKGPARS,NBKGPARS);
// constrain S to be positive in the S+B fit
const bool posS = 0;
// use B-only fit with fixed but non-zero signal when calculating the covariance matrix used for background systematics
const bool BonlyFitForSyst = 1;
// shift in the counter used to extract the covariance matrix
int shift = 1;
TH1D* HISTCDF=0; // signal CDF
////////////////////////////////////////////////////////////////////////////////
// fit functions
////////////////////////////////////////////////////////////////////////////////
Double_t fitQCD4Par(Double_t *m, Double_t *p)
{
double x=m[0]/sqrtS;
double logx=log(x);
return p[0]*pow(1.-x,p[1])/pow(x,p[2]+p[3]*logx);
}
Double_t fitQCD6Par(Double_t *m, Double_t *p)
{
double x=m[0]/sqrtS;
double logx=log(x);
return p[0]*pow(1.-x,p[1])/pow(x,p[2]+p[3]*logx+p[4]*pow(logx,2)+p[5]*pow(logx,3));
}
TF1 fit4par("fit4par",fitQCD4Par,BOUNDARIES[0],BOUNDARIES[NBINS],4);
TF1 fit6par("fit6par",fitQCD6Par,BOUNDARIES[0],BOUNDARIES[NBINS],6);
////////////////////////////////////////////////////////////////////////////////
// function integral -- 4-parameter background fit function
////////////////////////////////////////////////////////////////////////////////
double INTEGRAL_4PAR(double *x0, double *xf, double *par)
{
double xs=par[0];
double lumi=par[1];
double jes=par[2];
double jer=par[3];
double p0=par[4];
double p1=par[5];
double p2=par[6];
double p3=par[7];
double n[4] = {0.};
n[0]=par[10];
n[1]=par[11];
n[2]=par[12];
n[3]=par[13];
if( COV_MATRIX[0+shift][0+shift]>0. && (n[0]!=0. || n[1]!=0. || n[2]!=0. || n[3]!=0.) )
{
double g[4] = {0.};
for(int v=0; v<4; ++v)
{
for(int k=0; k<4; ++k) g[k]=n[v]*eigenValues(v)*eigenVectors[k][v];
p0 += g[0];
p1 += g[1];
p2 += g[2];
p3 += g[3];
}
}
fit4par.SetParameter(0,p0);
fit4par.SetParameter(1,p1);
fit4par.SetParameter(2,p2);
fit4par.SetParameter(3,p3);
// uses Simpson's 3/8th rule to compute the background integral over a short interval
double h=(xf[0]-x0[0])/3.;
double a=x0[0];
double b=xf[0];
double f1=fit4par.Eval(a);
double f2=fit4par.Eval(a+h);
double f3=fit4par.Eval(b-h);
double f4=fit4par.Eval(b);
double bkg=0.375*h*(f1 + 3*(f2 + f3) + f4);
//double bkg=fit4par.Integral(a,b);
if(bkg<0.) bkg=1e-7;
if(xs==0.0) return bkg;
double xprimef=jes*(jer*(xf[0]-SIGMASS)+SIGMASS);
double xprime0=jes*(jer*(x0[0]-SIGMASS)+SIGMASS);
int bin1=HISTCDF->GetXaxis()->FindBin(xprimef);
int bin2=HISTCDF->GetXaxis()->FindBin(xprime0);
if(bin1<1) bin1=1;
if(bin1>HISTCDF->GetNbinsX()) bin1=HISTCDF->GetNbinsX();
if(bin2<1) bin2=1;
if(bin2>HISTCDF->GetNbinsX()) bin2=HISTCDF->GetNbinsX();
double sig=xs*lumi*(HISTCDF->GetBinContent(bin1)-HISTCDF->GetBinContent(bin2));
return bkg+sig;
}
////////////////////////////////////////////////////////////////////////////////
// function integral -- 6-parameter background fit function
////////////////////////////////////////////////////////////////////////////////
double INTEGRAL_6PAR(double *x0, double *xf, double *par)
{
double xs=par[0];
double lumi=par[1];
double jes=par[2];
double jer=par[3];
double p0=par[4];
double p1=par[5];
double p2=par[6];
double p3=par[7];
double p4=par[8];
double p5=par[9];
double n[6] = {0.};
n[0]=par[10];
n[1]=par[11];
n[2]=par[12];
n[3]=par[13];
n[4]=par[14];
n[5]=par[15];
if( COV_MATRIX[0+shift][0+shift]>0. && (n[0]!=0. || n[1]!=0. || n[2]!=0. || n[3]!=0. || n[4]!=0. || n[5]!=0.) )
{
double g[6] = {0.};
for(int v=0; v<6; ++v)
{
for(int k=0; k<6; ++k) g[k]=n[v]*eigenValues(v)*eigenVectors[k][v];
p0 += g[0];
p1 += g[1];
p2 += g[2];
p3 += g[3];
p4 += g[4];
p5 += g[5];
}
}
fit6par.SetParameter(0,p0);
fit6par.SetParameter(1,p1);
fit6par.SetParameter(2,p2);
fit6par.SetParameter(3,p3);
fit6par.SetParameter(4,p4);
fit6par.SetParameter(5,p5);
// uses Simpson's 3/8th rule to compute the background integral over a short interval
double h=(xf[0]-x0[0])/3.;
double a=x0[0];
double b=xf[0];
double f1=fit6par.Eval(a);
double f2=fit6par.Eval(a+h);
double f3=fit6par.Eval(b-h);
double f4=fit6par.Eval(b);
double bkg=0.375*h*(f1 + 3*(f2 + f3) + f4);
if(bkg<0.) bkg=1e-7;
if(xs==0.0) return bkg;
double xprimef=jes*(jer*(xf[0]-SIGMASS)+SIGMASS);
double xprime0=jes*(jer*(x0[0]-SIGMASS)+SIGMASS);
int bin1=HISTCDF->GetXaxis()->FindBin(xprimef);
int bin2=HISTCDF->GetXaxis()->FindBin(xprime0);
if(bin1<1) bin1=1;
if(bin1>HISTCDF->GetNbinsX()) bin1=HISTCDF->GetNbinsX();
if(bin2<1) bin2=1;
if(bin2>HISTCDF->GetNbinsX()) bin2=HISTCDF->GetNbinsX();
double sig=xs*lumi*(HISTCDF->GetBinContent(bin1)-HISTCDF->GetBinContent(bin2));
return bkg+sig;
}
////////////////////////////////////////////////////////////////////////////////
// main function integral
////////////////////////////////////////////////////////////////////////////////
double INTEGRAL(double *x0, double *xf, double *par)
{
if(use6ParFit) return INTEGRAL_6PAR(x0, xf, par);
else return INTEGRAL_4PAR(x0, xf, par);
}
////////////////////////////////////////////////////////////////////////////////
// main function
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char* argv[])
{
if(argc<=2) {
cout << "Usage: stats MASS FINAL_STATE" << endl;
return 0;
}
SIGMASS = atof(argv[1]);
string masspoint = argv[1];
string final_state = "qq";
if(argc>2) final_state = argv[2];
if(argc>3) NPES = atoi(argv[3]);
int jobID = 0;
if(argc>4) jobID = atoi(argv[4]);
//##################################################################################################################################
// User Section 2
//
// (Change the code outside the User Sections only if you know what you are doing)
//
// input data file
INPUTFILES.push_back("Data_and_ResonanceShapes/histo_bkg_mjj_pseudo.root");
// data histogram name
string datahistname = "hist_mass_1GeV";
// input signal files with resonance shapes
string filename = "Data_and_ResonanceShapes/Resonance_Shapes_qq_13TeV_newJEC.root";
if(final_state=="qg") filename = "Data_and_ResonanceShapes/Resonance_Shapes_qg_13TeV_newJEC.root";
if(final_state=="gg") filename = "Data_and_ResonanceShapes/Resonance_Shapes_gg_13TeV_newJEC.root";
// signal histogram name
string histname = "h_" + final_state + "_" + masspoint;
//
// End of User Section 2
//##################################################################################################################################
if(BonlyFitForSyst) shift = 0;
if(!posS) PAR_MIN[0] = -PAR_MAX[0];
if(!use6ParFit) { PAR_TYPE[8]=3; PAR_TYPE[9]=3; PAR_NUIS[14]=0; PAR_NUIS[15]=0; }
// initialize the covariance matrix
for(int i = 0; i<NPARS; ++i) { for(int j = 0; j<NPARS; ++j) COV_MATRIX[i][j]=0.; }
// enable more detailed printout from the BAT MCMC
BCLog::SetLogLevel(BCLog::detail);
HISTCDF=getSignalCDF(filename.c_str(), histname.c_str(), filename.c_str(), histname.c_str(), 1., 1., 1.);
assert(HISTCDF && SIGMASS>0);
// get the data
TH1D* data=getData(INPUTFILES, datahistname.c_str(), NBINS, BOUNDARIES);
// create the output file
string outputfile = OUTPUTFILE.substr(0,OUTPUTFILE.find(".root")) + "_" + masspoint + "_" + final_state + (argc>4 ? "_" : "") + (argc>4 ? to_string(jobID) : "") + ".root";
TFile* rootfile=new TFile(outputfile.c_str(), "RECREATE"); rootfile->cd();
// setup an initial fitter just to get pseudo-data, not to perform any actual fits
//Fitter* initfit = new Fitter(data, INTEGRAL);
//initfit->setRandomSeed(3157);
//TH1D* pseudodata = initfit->makePseudoDataFromMC("data_0");
//pseudodata->SaveAs("pseudodata.root");
// setup the limit values
double observedLowerBound, observedUpperBound;
vector<double> expectedLowerBounds;
vector<double> expectedUpperBounds;
cout << "********************** pe=0 (data) **********************" << endl;
// setup the fitter with the input from the signal+background fit
Fitter* fit_data = new Fitter(data, INTEGRAL); // replace 'data' with 'pseudodata' if interested in fitting to pseudo-data derived from QCD MC
fit_data->setRandomSeed(31415+jobID*100);
fit_data->setPOIIndex(POIINDEX);
//fit_data->setPrintLevel(0);
for(int i=0; i<NPARS; i++) fit_data->defineParameter(i, PAR_NAMES[i].c_str(), PAR_GUESSES[i], PAR_ERR[i], PAR_MIN[i], PAR_MAX[i], PAR_NUIS[i]);
// perform a signal+background fit possibly followed by a background-only fit with a fixed but non-zero signal
for(int i=0; i<NPARS; i++) if(PAR_TYPE[i]>=2 || PAR_MIN[i]==PAR_MAX[i]) fit_data->fixParameter(i);
if(BonlyFitForSyst) { fit_data->doFit(); if(fit_data->getFitStatus().find("CONVERGED")==string::npos) { fit_data->fixParameter(0); fit_data->setParameter(0, 0.0); } else fit_data->fixParameter(0); }
//fit_data->fixParameter(0); fit_data->setParameter(0, 0.0); // for MC studies with expected limits, fixing the signal xs to 0 in the fit
fit_data->doFit(&COV_MATRIX[0][0], NPARS);
cout << "Data fit status: " << fit_data->getFitStatus() << endl;
double nll_SpB_data = fit_data->evalNLL();
//cout << "NLL(S+B) = " << nll_SpB_data << endl;
double sign_data = fit_data->getParameter(0)/fabs(fit_data->getParameter(0));
fit_data->fixParameter(0); // a parameter needs to be fixed before its value can be changed
fit_data->setParameter(0, 0.0); // set the xs value to 0 to get the B component of the S+B fit (for calculating pulls and generating pseudo-data)
if(calcSig) fit_data->doFit();
double nll_B_data = fit_data->evalNLL();
//cout << "NLL(B) = " << nll_B_data << endl;
fit_data->setPrintLevel(0);
if(jobID==0) fit_data->calcPull("pull_bkg_0")->Write();
if(jobID==0) fit_data->calcDiff("diff_bkg_0")->Write();
if(jobID==0) fit_data->write("fit_bkg_0");
// Significance estimator: Sig = sgn(S)*sqrt{-2ln[L(B)/L(S+B)]}
double nll_Diff_data = nll_B_data-nll_SpB_data;
if(calcSig) cout << "Significance(data) = " << ( nll_Diff_data>0 ? sign_data*sqrt(2*nll_Diff_data) : 0. ) << endl;
// calculate eigenvalues and eigenvectors
for(int i = 0; i<NBKGPARS; ++i) { for(int j = 0; j<NBKGPARS; ++j) { covMatrix(i,j)=COV_MATRIX[i+shift][j+shift]; } }
//covMatrix.Print();
const TMatrixDSymEigen eigen_data(covMatrix);
eigenValues = eigen_data.GetEigenValues();
eigenValues.Sqrt();
//eigenValues.Print();
eigenVectors = eigen_data.GetEigenVectors();
//eigenVectors.Print();
fit_data->setParLimits(0, 0.0, PAR_MAX[0]); // for the posterior calculation, the signal xs has to be positive
TGraph* post_data = 0;
if(useMCMC==0)
{
post_data=fit_data->calculatePosterior(NSAMPLES);
if(jobID==0) post_data->Write("post_0");
cout << "Call limit reached: " << (fit_data->callLimitReached() ? "True" : "False") << endl;
}
else
{
post_data=fit_data->calculatePosterior(0);
pair<double, double> statonly_bounds=evaluateInterval(post_data, ALPHA, LEFTSIDETAIL);
fit_data->setParLimits(0, 0.0, xsUpperBoundFactor*(statonly_bounds.second));
post_data=fit_data->calculatePosterior((useMCMC ? 1 : NSAMPLES), useMCMC);
//fit_data->PrintAllMarginalized("plots.ps");
//fit_data->PrintResults("results.txt");
if(jobID==0) post_data->Write("post_0");
}
// evaluate the limit
pair<double, double> bounds_data=evaluateInterval(post_data, ALPHA, LEFTSIDETAIL);
observedLowerBound=bounds_data.first;
observedUpperBound=bounds_data.second;
// reset the covariance matrix
for(int i = 0; i<NPARS; ++i) { for(int j = 0; j<NPARS; ++j) COV_MATRIX[i][j]=0.; }
// perform the PEs
for(int pe=(jobID*NPES+1); pe<=(jobID*NPES+NPES); ++pe) {
cout << "********************** pe=" << pe << " **********************" << endl;
ostringstream pestr;
pestr << "_" << pe;
fit_data->fixParameter(0); // a parameter needs to be fixed before its value can be changed
// setup the fitter with the input from the signal+background fit
fit_data->setParameter(0, 0.0); // set the xs value to 0 to get the B component of the S+B fit (for calculating pulls and generating pseudo-data)
TH1D* hist = fit_data->makePseudoData((string("data")+pestr.str()).c_str()); // makes pseudo-data from the background fit
fit_data->setParameter(0, PAR_GUESSES[0]);
Fitter* fit = new Fitter(hist, INTEGRAL);
fit->setPOIIndex(POIINDEX);
fit->setPrintLevel(0);
for(int i=0; i<NPARS; i++) fit->defineParameter(i, PAR_NAMES[i].c_str(), PAR_GUESSES[i], PAR_ERR[i], PAR_MIN[i], PAR_MAX[i], PAR_NUIS[i]);
// perform a signal+background fit possibly followed by a background-only fit with a fixed but non-zero signal
for(int i=0; i<NPARS; i++) if(PAR_TYPE[i]>=2 || PAR_MIN[i]==PAR_MAX[i]) fit->fixParameter(i);
if(BonlyFitForSyst) { fit->doFit(); if(fit->getFitStatus().find("CONVERGED")==string::npos) { fit->fixParameter(0); fit->setParameter(0, 0.0); } else fit->fixParameter(0); }
fit->doFit(&COV_MATRIX[0][0], NPARS);
if(fit->getFitStatus().find("CONVERGED")==string::npos) continue; // skip the PE if the fit did not converge
double nll_SpB = fit->evalNLL();
//cout << "NLL(S+B) = " << nll_SpB << endl;
double sign = fit->getParameter(0)/fabs(fit->getParameter(0));
fit->fixParameter(0); // a parameter needs to be fixed before its value can be changed
fit->setParameter(0, 0.0); // set the xs value to 0 to get the B component of the S+B fit (for calculating pulls and generating pseudo-data)
if(calcSig) fit->doFit();
double nll_B = fit->evalNLL();
//cout << "NLL(B) = " << nll_B << endl;
fit->calcPull((string("pull_bkg")+pestr.str()).c_str())->Write();
fit->calcDiff((string("diff_bkg")+pestr.str()).c_str())->Write();
fit->write((string("fit_bkg")+pestr.str()).c_str());
// Significance estimator: Sig = sgn(S)*sqrt{-2ln[L(B)/L(S+B)]}
double nll_Diff = nll_B-nll_SpB;
//if(nll_Diff<0.) cout << "-----> Negative NLL difference: " << nll_Diff << endl;
if(calcSig) cout << "Significance(" << pe << ") = " << ( nll_Diff>0 ? sign*sqrt(2*nll_Diff) : 0. ) << endl;
// calculate eigenvalues and eigenvectors
for(int i = 0; i<NBKGPARS; ++i) { for(int j = 0; j<NBKGPARS; ++j) { covMatrix(i,j)=COV_MATRIX[i+shift][j+shift]; } }
const TMatrixDSymEigen eigen(covMatrix);
eigenValues = eigen.GetEigenValues();
bool hasNegativeElement = false;
for(int i = 0; i<NBKGPARS; ++i) { if(eigenValues(i)<0.) hasNegativeElement = true; }
if(hasNegativeElement) continue; // this is principle should never happen. However, if it does, skip the PE
eigenValues.Sqrt();
eigenVectors = eigen.GetEigenVectors();
fit->setParLimits(0, 0.0, PAR_MAX[0]); // for the posterior calculation, the signal xs has to be positive
TGraph* post = 0;
if(useMCMC==0)
{
post=fit->calculatePosterior(NSAMPLES);
post->Write((string("post")+pestr.str()).c_str());
cout << "Call limit reached in pe=" << pe << ": " << (fit->callLimitReached() ? "True" : "False") << endl;
}
else
{
post=fit->calculatePosterior(0);
pair<double, double> statonly_bounds=evaluateInterval(post, ALPHA, LEFTSIDETAIL);
fit->setParLimits(0, 0.0, xsUpperBoundFactor*(statonly_bounds.second));
post=fit->calculatePosterior((useMCMC ? 1 : NSAMPLES), useMCMC);
post->Write((string("post")+pestr.str()).c_str());
}
// evaluate the limit
pair<double, double> bounds=evaluateInterval(post, ALPHA, LEFTSIDETAIL);
if(bounds.first==0. && bounds.second>0.)
{
expectedLowerBounds.push_back(bounds.first);
expectedUpperBounds.push_back(bounds.second);
}
// reset the covariance matrix
for(int i = 0; i<NPARS; ++i) { for(int j = 0; j<NPARS; ++j) COV_MATRIX[i][j]=0.; }
delete fit;
}
////////////////////////////////////////////////////////////////////////////////
// print the results
////////////////////////////////////////////////////////////////////////////////
cout << "**********************************************************************" << endl;
for(unsigned int i=0; i<expectedLowerBounds.size(); i++)
cout << "expected bound(" << (jobID*NPES+i+1) << ") = [ " << expectedLowerBounds[i] << " , " << expectedUpperBounds[i] << " ]" << endl;
cout << "\nobserved bound = [ " << observedLowerBound << " , " << observedUpperBound << " ]" << endl;
if(LEFTSIDETAIL>0.0 && NPES>0) {
cout << "\n***** expected lower bounds *****" << endl;
double median;
pair<double, double> onesigma;
pair<double, double> twosigma;
getQuantiles(expectedLowerBounds, median, onesigma, twosigma);
cout << "median: " << median << endl;
cout << "+/-1 sigma band: [ " << onesigma.first << " , " << onesigma.second << " ] " << endl;
cout << "+/-2 sigma band: [ " << twosigma.first << " , " << twosigma.second << " ] " << endl;
}
if(LEFTSIDETAIL<1.0 && NPES>0) {
cout << "\n***** expected upper bounds *****" << endl;
double median;
pair<double, double> onesigma;
pair<double, double> twosigma;
getQuantiles(expectedUpperBounds, median, onesigma, twosigma);
cout << "median: " << median << endl;
cout << "+/-1 sigma band: [ " << onesigma.first << " , " << onesigma.second << " ] " << endl;
cout << "+/-2 sigma band: [ " << twosigma.first << " , " << twosigma.second << " ] " << endl;
}
// close the output file
rootfile->Close();
return 0;
}