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» Unequal floor contact (slipping, nonplanar surface, etc.).

Some of the errors might be deterministic (systematic); thus, they can be eliminated by
proper calibration of the system. However, there are still a number of nondeterministic
(random) errors that remain, leading to uncertainties in position estimation over time. From
a geometric point of view, one can classify the errors into three types:

1. Range error: integrated path length (distance) of the robot’s movement
— sum of the wheel movements

2. Turn error: similar to range error, but for turns
— difference of the wheel motions

3. Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribution to the overall position error is nonlinear. Consider a robot whose position is ini-
tially perfectly wellknown, moving forward in a straight line along the x -axis. The error in
the y -position introduced by a move of d meters will have a component of dsinA6 , which
can be quite large as the angular error AB grows. Over time, as a mobile robot moves about
the environment, the rotational error between its internal reference frame and its original
reference frame grows quickly. As the robot moves away from the origin of these reference
frames, the resulting linear error in position grows quite large. It is instructive to establish
an error model for odometric accuracy and see how the errors propagate over time.

5.2.4 An error model for odometric position estimation
Generally the pose (position) of a robot is represented by the vector

(5.1)
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For a differential-drive robot (figure 5.3) the position can be estimated starting from a
known position by integrating the movement (summing the incremental travel distances).
For a discrete system with a fixed sampling interval A¢, the incremental travel distances
(Ax;Ay;AQ) are

Ax

Ascos(0+A0/2), (5.2)

Ay

Assin(0 +A0/2), (5.3)
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Figure 5.3
Movement of a differential-drive robot.
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where
(Ax;Ay;AB) = path traveled in the last sampling interval;
As,;As, = traveled distances for the right and left wheel respectively;
b = distance between the two wheels of differential-drive robot.
Thus we get the updated position p':
X' Ascos(0+A0/2) X Ascos(0+A0/2)
p' =)V =p+t|Assin(6+A0/2)| = |y|+ |Assin(0+A0/2)]. (5.6)
0' AB 0 AB

By using the relation for (As;A0) of equations (5.4) and (5.5) we further obtain the
basic equation for odometric position update (for differential drive robots):
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As we discussed earlier, odometric position updates can give only a very rough estimate
of the actual position. Owing to integration errors of the uncertainties of p and the motion
errors during the incremental motion (As,;As,) , the position error based on odometry inte-
gration grows with time.

In the next step we will establish an error model for the integrated position p' to obtain
the covariance matrix X, of the odometric position estimate. To do so, we assume that at
the starting point the initial covariance matrix X, is known. For the motion increment
(As,;As;) we assume the following covariance matrix X, :

k|As| 0

) 5.8
0 klAs ©8)

z, = covar(As,, As;) =

where As, and As, are the distances traveled by each wheel, and &, , k; are error con-
stants representing the nondeterministic parameters of the motor drive and the wheel-floor
interaction. As you can see, in equation (5.8) we made the following assumptions:

* The two errors of the individually driven wheels are independent,22

* The variance of the errors (left and right wheels) are proportional to the absolute value
of the traveled distances (As,;As;) .

These assumptions, while not perfect, are suitable and will thus be used for the further
development of the error model. The motion errors are due to imprecise movement because
of deformation of wheel, slippage, unequal floor, errors in encoders, and so on. The values
for the error constants k, and k; depend on the robot and the environment and should be
experimentally established by performing and analyzing representative movements.

If we assume that p and A,; = [As,, Asl]T are uncorrelated and the derivation of f
(equation [5.7]) is reasonably approximated by the first-order Taylor expansion (lincariza-
tion), we conclude, using the error propagation law (see section 4.1.3.2),

22.1f there is more knowledge regarding the actual robot kinematics, the correlation terms of the
covariance matrix could also be used.
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T T
2p| = fo'zp'vpf +vArlf' ZA'VAr]f . (5.9)

The covariance matrix X, is, of course, always given by the X, of the previous step,
and can thus be calculated after specifying an initial value (e.g., 0).
Using equation (5.7) we can develop the two Jacobians, F,, = V ,f and F = V. l f:

- of of 1 0 —Assin(6 +A0/2)
F,=V,f=V\(f) = TI I} =4, Ascos(6+A0/2) | (5.10)
ox Oy 00 :
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(5.11)

The details for arriving at equation (5.11) are

_ _ | o o _
F, =V, f=|=— = = ... 5.12
A A”f |:6AS}, 8As] (5-12)
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Error Propagation in Odometry
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Figure 5.4

Growth of the pose uncertainty for straight-line movement: Note that the uncertainty in y grows much
faster than in the direction of movement. This results from the integration of the uncertainty about the
robot’s orientation. The ellipses drawn around the robot positions represent the uncertainties in the
x,y direction (e.g. 35 ). The uncertainty of the orientation 0 is not represented in the picture, although
its effect can be indirectly observed.

As = ——1 . Ap = — (5.14)

ol - o (5.15)

we obtain equation (5.11).

Figures 5.4 and 5.5 show typical examples of how the position errors grow with time.
The results have been computed using the error model presented earlier.

Once the error model has been established, the error parameters must be specified. One
can compensate for deterministic errors properly calibrating the robot. However the error
parameters specifying the nondeterministic errors can only be quantified by statistical
(repetitive) measurements. A detailed discussion of odometric errors and a method for cal-
ibration and quantification of deterministic and nondeterministic errors can be found in [6].
A method for on-the-fly odometry error estimation is presented in [205].
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Error Propagation in Odometry
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Figure 5.5

Growth of the pose uncertainty for circular movement (» = const): Again, the uncertainty perpendic-
ular to the movement grows much faster than that in the direction of movement. Note that the main
axis of the uncertainty ellipse does not remain perpendicular to the direction of movement.

5.3 To Localize or Not to Localize: Localization-Based Navigation Versus
Programmed Solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms 4 and B. In creating a navigation system, it is clear that the mobile
robot will need sensors and a motion control system. Sensors are absolutely required to
avoid hitting moving obstacles such as humans, and some motion control system is required
so that the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization
system. Localization may seem mandatory in order to navigate successfully between the
two rooms. It is through localizing on a map, after all, that the robot can hope to recover its
position and detect when it has arrived at the goal location. It is true that, at the least, the
robot must have a way of detecting the goal location. However, explicit localization with
reference to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors
and effectors are noisy and information-limited, one should avoid creating a geometric map
for localization. Instead, this community suggests designing sets of behaviors that together
result in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.



