Skip to content

Latest commit

 

History

History
42 lines (30 loc) · 1.64 KB

README.md

File metadata and controls

42 lines (30 loc) · 1.64 KB

A framework to build convolutional network for point cloud processing.

FKAConv products

Paper: FKAConv, Feature-Kernel Alignment for Point Cloud Convolution

LightConvPoint is the framework developped and used for FKAConv experiments. The paper is available at openaccess.thecvf.com

If you use the FKAConv code or the LightConvPoint framework in your research, please consider citing:

@inproceedings{boulch2020fka,
  title={{FKAConv: Feature-Kernel Alignment for Point Cloud Convolution}},
  author={Boulch, Alexandre and Puy, Gilles and Marlet, Renaud},
  booktitle={15th Asian Conference on Computer Vision (ACCV 2020)},
  year={2020}
}

Code for FKAConv

The complete code and examples for FKAConv is available at https://github.com/valeoai/FKAConv. It relies on LightConvPoint v0.2.

Ressources

Example

We provide examples classification and segmentation datasets:

  • ModelNet40
  • ShapeNet
  • S3DIS
  • Semantic8
  • NPM3D