-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdataset.py
68 lines (63 loc) · 3.57 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
## Import Data Loaders ##
from dataloader import *
def get_dataset(dataset, root_dir, imageSize, batchSize, workers=1):
if dataset == 'cifar10':
train_dataset = dset.CIFAR10(root=root_dir, download=True, train=True,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
test_dataset = dset.CIFAR10(root=root_dir, download=True, train=False,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif dataset == 'mnist':
train_dataset = dset.MNIST(root=root_dir, train=True, download=True,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]))
test_dataset = dset.MNIST(root=root_dir, train=False, download=True,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]))
elif dataset == 'mnistm':
train_dataset = MNIST_M(root=root_dir, train=True,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
test_dataset = MNIST_M(root=root_dir, train=False,
transform=transforms.Compose([
transforms.Scale(imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif dataset == 'usps':
train_dataset = USPS(root=root_dir, train=True,
image_size=imageSize,
transform=transforms.Compose([
transforms.Scale(imageSize),
]))
test_dataset = USPS(root=root_dir, train=False,
image_size=imageSize,
transform=transforms.Compose([
transforms.Scale(imageSize),
]))
assert train_dataset, test_dataset
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batchSize,
shuffle=True, num_workers=int(workers))
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=batchSize,
shuffle=False, num_workers=int(workers))
return train_dataloader, test_dataloader