-
Notifications
You must be signed in to change notification settings - Fork 17
/
videoclipper.py
329 lines (312 loc) · 13.9 KB
/
videoclipper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import sys
import copy
import librosa
import logging
import argparse
import numpy as np
import soundfile as sf
import moviepy.editor as mpy
# from modelscope.pipelines import pipeline
# from modelscope.utils.constant import Tasks
from subtitle_utils import generate_srt, generate_srt_clip, distribute_spk
from trans_utils import pre_proc, proc, write_state, load_state, proc_spk, generate_vad_data
from argparse_tools import ArgumentParser, get_commandline_args
from moviepy.editor import *
from moviepy.video.tools.subtitles import SubtitlesClip
class VideoClipper():
def __init__(self, asr_pipeline, sd_pipeline=None):
logging.warning("Initializing VideoClipper.")
self.asr_pipeline = asr_pipeline
self.sd_pipeline = sd_pipeline
def recog(self, audio_input, sd_switch='no', state=None):
if state is None:
state = {}
sr, data = audio_input
assert sr == 16000, "16kHz sample rate required, {} given.".format(sr)
if len(data.shape) == 2: # multi-channel wav input
logging.warning("Input wav shape: {}, only first channel reserved.").format(data.shape)
data = data[:,0]
state['audio_input'] = (sr, data)
data = data.astype(np.float64)
rec_result = self.asr_pipeline(audio_in=data)
if sd_switch == 'yes':
vad_data = generate_vad_data(data.astype(np.float32), rec_result['sentences'], sr)
sd_result = self.sd_pipeline(audio=vad_data, batch_size=1)
rec_result['sd_sentences'] = distribute_spk(rec_result['sentences'], sd_result['text'])
res_srt = generate_srt(rec_result['sd_sentences'])
state['sd_sentences'] = rec_result['sd_sentences']
else:
res_srt = generate_srt(rec_result['sentences'])
state['recog_res_raw'] = rec_result['text_postprocessed']
state['timestamp'] = rec_result['time_stamp']
state['sentences'] = rec_result['sentences']
res_text = rec_result['text']
return res_text, res_srt, state
def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None):
# get from state
audio_input = state['audio_input']
recog_res_raw = state['recog_res_raw']
timestamp = state['timestamp']
sentences = state['sentences']
sr, data = audio_input
data = data.astype(np.float64)
all_ts = []
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
for _dest_text in dest_text.split('#'):
_dest_text = pre_proc(_dest_text)
ts = proc(recog_res_raw, timestamp, _dest_text)
for _ts in ts: all_ts.append(_ts)
else:
for _dest_spk in dest_spk.split('#'):
ts = proc_spk(_dest_spk, state['sd_sentences'])
for _ts in ts: all_ts.append(_ts)
ts = all_ts
# ts.sort()
srt_index = 0
clip_srt = ""
if len(ts):
start, end = ts[0]
start = min(max(0, start+start_ost*16), len(data))
end = min(max(0, end+end_ost*16), len(data))
res_audio = data[start:end]
start_end_info = "from {} to {}".format(start/16000, end/16000)
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index)
clip_srt += srt_clip
for _ts in ts[1:]: # multiple sentence input or multiple output matched
start, end = _ts
start = min(max(0, start+start_ost*16), len(data))
end = min(max(0, end+end_ost*16), len(data))
start_end_info += ", from {} to {}".format(start, end)
res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1)
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1)
clip_srt += srt_clip
if len(ts):
message = "{} periods found in the speech: ".format(len(ts)) + start_end_info
else:
message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text."
res_audio = data
return (sr, res_audio), message, clip_srt
def video_recog(self, vedio_filename, sd_switch='no'):
vedio_filename = vedio_filename
clip_video_file = vedio_filename[:-4] + '_clip.mp4'
video = mpy.VideoFileClip(vedio_filename)
audio_file = vedio_filename[:-3] + 'wav'
video.audio.write_audiofile(audio_file)
wav = librosa.load(audio_file, sr=16000)[0]
state = {
'vedio_filename': vedio_filename,
'clip_video_file': clip_video_file,
'video': video,
}
# res_text, res_srt = self.recog((16000, wav), state)
return self.recog((16000, wav), sd_switch, state)
def video_clip(self, dest_text, start_ost, end_ost, state, font_size=32, font_color='white', add_sub=False, dest_spk=None):
# get from state
recog_res_raw = state['recog_res_raw']
timestamp = state['timestamp']
sentences = state['sentences']
video = state['video']
clip_video_file = state['clip_video_file']
vedio_filename = state['vedio_filename']
all_ts = []
srt_index = 0
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
for _dest_text in dest_text.split('#'):
_dest_text = pre_proc(_dest_text)
ts = proc(recog_res_raw, timestamp, _dest_text)
for _ts in ts: all_ts.append(_ts)
else:
for _dest_spk in dest_spk.split('#'):
ts = proc_spk(_dest_spk, state['sd_sentences'])
for _ts in ts: all_ts.append(_ts)
time_acc_ost = 0.0
ts = all_ts
# ts.sort()
clip_srt = ""
if len(ts):
start, end = ts[0][0] / 16000, ts[0][1] / 16000
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost)
start, end = start+start_ost/1000.0, end+end_ost/1000.0
video_clip = video.subclip(start, end)
start_end_info = "from {} to {}".format(start, end)
clip_srt += srt_clip
if add_sub:
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
subtitles = SubtitlesClip(subs, generator)
video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))])
concate_clip = [video_clip]
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
for _ts in ts[1:]:
start, end = _ts[0] / 16000, _ts[1] / 16000
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost)
chi_subs = []
sub_starts = subs[0][0][0]
for sub in subs:
chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1]))
start, end = start+start_ost/1000.0, end+end_ost/1000.0
_video_clip = video.subclip(start, end)
start_end_info += ", from {} to {}".format(start, end)
clip_srt += srt_clip
if add_sub:
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
subtitles = SubtitlesClip(chi_subs, generator)
_video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))])
# _video_clip.write_videofile("debug.mp4", audio_codec="aac")
concate_clip.append(copy.copy(_video_clip))
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
message = "{} periods found in the audio: ".format(len(ts)) + start_end_info
logging.warning("Concating...")
if len(concate_clip) > 1:
video_clip = concatenate_videoclips(concate_clip)
video_clip.write_videofile(clip_video_file, audio_codec="aac")
else:
clip_video_file = vedio_filename
message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text."
srt_clip = ''
return clip_video_file, message, clip_srt
def get_parser():
parser = ArgumentParser(
description="ClipVideo Argument",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--stage",
type=int,
choices=(1, 2),
help="Stage, 0 for recognizing and 1 for clipping",
required=True
)
parser.add_argument(
"--file",
type=str,
default=None,
help="Input file path",
required=True
)
parser.add_argument(
"--sd_switch",
type=str,
choices=("no", "yes"),
default="no",
help="Trun on the speaker diarization or not",
)
parser.add_argument(
"--output_dir",
type=str,
default='./output',
help="Output files path",
)
parser.add_argument(
"--dest_text",
type=str,
default=None,
help="Destination text string for clipping",
)
parser.add_argument(
"--dest_spk",
type=str,
default=None,
help="Destination spk id for clipping",
)
parser.add_argument(
"--start_ost",
type=int,
default=0,
help="Offset time in ms at beginning for clipping"
)
parser.add_argument(
"--end_ost",
type=int,
default=0,
help="Offset time in ms at ending for clipping"
)
parser.add_argument(
"--output_file",
type=str,
default=None,
help="Output file path"
)
return parser
def runner(stage, file, sd_switch, output_dir, dest_text, dest_spk, start_ost, end_ost, output_file, config=None):
audio_suffixs = ['wav']
video_suffixs = ['mp4']
if file[-3:] in audio_suffixs:
mode = 'audio'
elif file[-3:] in video_suffixs:
mode = 'video'
else:
logging.error("Unsupported file format: {}".format(file))
while output_dir.endswith('/'):
output_dir = output_dir[:-1]
if stage == 1:
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
# initialize modelscope asr pipeline
logging.warning("Initializing modelscope asr pipeline.")
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
output_dir=output_dir,
)
sd_pipeline = pipeline(
task='speaker-diarization',
model='damo/speech_campplus_speaker-diarization_common',
model_revision='v1.0.0'
)
audio_clipper = VideoClipper(inference_pipeline, sd_pipeline)
if mode == 'audio':
logging.warning("Recognizing audio file: {}".format(file))
wav, sr = librosa.load(file, sr=16000)
res_text, res_srt, state = audio_clipper.recog((sr, wav), sd_switch)
if mode == 'video':
logging.warning("Recognizing video file: {}".format(file))
res_text, res_srt, state = audio_clipper.video_recog(file, sd_switch)
total_srt_file = output_dir + '/total.srt'
with open(total_srt_file, 'w') as fout:
fout.write(res_srt)
logging.warning("Write total subtitile to {}".format(total_srt_file))
write_state(output_dir, state)
logging.warning("Recognition successed. You can copy the text segment from below and use stage 2.")
print(res_text)
if stage == 2:
audio_clipper = VideoClipper(None)
if mode == 'audio':
state = load_state(output_dir)
wav, sr = librosa.load(file, sr=16000)
state['audio_input'] = (sr, wav)
(sr, audio), message, srt_clip = audio_clipper.clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
if output_file is None:
output_file = output_dir + '/result.wav'
clip_srt_file = output_file[:-3] + 'srt'
logging.warning(message)
sf.write(output_file, audio, 16000)
assert output_file.endswith('.wav'), "output_file must ends with '.wav'"
logging.warning("Save clipped wav file to {}".format(output_file))
with open(clip_srt_file, 'w') as fout:
fout.write(srt_clip)
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
if mode == 'video':
state = load_state(output_dir)
state['vedio_filename'] = file
if output_file is None:
state['clip_video_file'] = file[:-4] + '_clip.mp4'
else:
state['clip_video_file'] = output_file
clip_srt_file = state['clip_video_file'][:-3] + 'srt'
state['video'] = mpy.VideoFileClip(file)
clip_video_file, message, srt_clip = audio_clipper.video_clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
logging.warning("Clipping Log: {}".format(message))
logging.warning("Save clipped mp4 file to {}".format(clip_video_file))
with open(clip_srt_file, 'w') as fout:
fout.write(srt_clip)
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
runner(**kwargs)
if __name__ == '__main__':
main()