Skip to content

Latest commit

 

History

History
148 lines (143 loc) · 33.9 KB

CONFIGURATION.md

File metadata and controls

148 lines (143 loc) · 33.9 KB

//@file

Global configuration properties

Property C/P Range Default Description
builtin.features * gzip, snappy, ssl, sasl, regex, lz4, sasl_gssapi, sasl_plain, sasl_scram, plugins, zstd Indicates the builtin features for this build of librdkafka. An application can either query this value or attempt to set it with its list of required features to check for library support.
Type: CSV flags
client.id * rdkafka Client identifier.
Type: string
metadata.broker.list * Initial list of brokers as a CSV list of broker host or host:port. The application may also use rd_kafka_brokers_add() to add brokers during runtime.
Type: string
bootstrap.servers * Alias for metadata.broker.list
message.max.bytes * 1000 .. 1000000000 1000000 Maximum Kafka protocol request message size.
Type: integer
message.copy.max.bytes * 0 .. 1000000000 65535 Maximum size for message to be copied to buffer. Messages larger than this will be passed by reference (zero-copy) at the expense of larger iovecs.
Type: integer
receive.message.max.bytes * 1000 .. 2147483647 100000000 Maximum Kafka protocol response message size. This serves as a safety precaution to avoid memory exhaustion in case of protocol hickups. This value must be at least fetch.max.bytes + 512 to allow for protocol overhead; the value is adjusted automatically unless the configuration property is explicitly set.
Type: integer
max.in.flight.requests.per.connection * 1 .. 1000000 1000000 Maximum number of in-flight requests per broker connection. This is a generic property applied to all broker communication, however it is primarily relevant to produce requests. In particular, note that other mechanisms limit the number of outstanding consumer fetch request per broker to one.
Type: integer
max.in.flight * Alias for max.in.flight.requests.per.connection
metadata.request.timeout.ms * 10 .. 900000 60000 Non-topic request timeout in milliseconds. This is for metadata requests, etc.
Type: integer
topic.metadata.refresh.interval.ms * -1 .. 3600000 300000 Topic metadata refresh interval in milliseconds. The metadata is automatically refreshed on error and connect. Use -1 to disable the intervalled refresh.
Type: integer
metadata.max.age.ms * 1 .. 86400000 900000 Metadata cache max age. Defaults to topic.metadata.refresh.interval.ms * 3
Type: integer
topic.metadata.refresh.fast.interval.ms * 1 .. 60000 250 When a topic loses its leader a new metadata request will be enqueued with this initial interval, exponentially increasing until the topic metadata has been refreshed. This is used to recover quickly from transitioning leader brokers.
Type: integer
topic.metadata.refresh.fast.cnt * 0 .. 1000 10 DEPRECATED No longer used.
Type: integer
topic.metadata.refresh.sparse * true, false true Sparse metadata requests (consumes less network bandwidth)
Type: boolean
topic.blacklist * Topic blacklist, a comma-separated list of regular expressions for matching topic names that should be ignored in broker metadata information as if the topics did not exist.
Type: pattern list
debug * generic, broker, topic, metadata, feature, queue, msg, protocol, cgrp, security, fetch, interceptor, plugin, consumer, admin, eos, all A comma-separated list of debug contexts to enable. Detailed Producer debugging: broker,topic,msg. Consumer: consumer,cgrp,topic,fetch
Type: CSV flags
socket.timeout.ms * 10 .. 300000 60000 Default timeout for network requests. Producer: ProduceRequests will use the lesser value of socket.timeout.ms and remaining message.timeout.ms for the first message in the batch. Consumer: FetchRequests will use fetch.wait.max.ms + socket.timeout.ms. Admin: Admin requests will use socket.timeout.ms or explicitly set rd_kafka_AdminOptions_set_operation_timeout() value.
Type: integer
socket.blocking.max.ms * 1 .. 60000 1000 DEPRECATED No longer used.
Type: integer
socket.send.buffer.bytes * 0 .. 100000000 0 Broker socket send buffer size. System default is used if 0.
Type: integer
socket.receive.buffer.bytes * 0 .. 100000000 0 Broker socket receive buffer size. System default is used if 0.
Type: integer
socket.keepalive.enable * true, false false Enable TCP keep-alives (SO_KEEPALIVE) on broker sockets
Type: boolean
socket.nagle.disable * true, false false Disable the Nagle algorithm (TCP_NODELAY) on broker sockets.
Type: boolean
socket.max.fails * 0 .. 1000000 1 Disconnect from broker when this number of send failures (e.g., timed out requests) is reached. Disable with 0. WARNING: It is highly recommended to leave this setting at its default value of 1 to avoid the client and broker to become desynchronized in case of request timeouts. NOTE: The connection is automatically re-established.
Type: integer
broker.address.ttl * 0 .. 86400000 1000 How long to cache the broker address resolving results (milliseconds).
Type: integer
broker.address.family * any, v4, v6 any Allowed broker IP address families: any, v4, v6
Type: enum value
enable.sparse.connections * true, false true When enabled the client will only connect to brokers it needs to communicate with. When disabled the client will maintain connections to all brokers in the cluster.
Type: boolean
reconnect.backoff.jitter.ms * 0 .. 3600000 0 DEPRECATED No longer used. See reconnect.backoff.ms and reconnect.backoff.max.ms.
Type: integer
reconnect.backoff.ms * 0 .. 3600000 100 The initial time to wait before reconnecting to a broker after the connection has been closed. The time is increased exponentially until reconnect.backoff.max.ms is reached. -25% to +50% jitter is applied to each reconnect backoff. A value of 0 disables the backoff and reconnects immediately.
Type: integer
reconnect.backoff.max.ms * 0 .. 3600000 10000 The maximum time to wait before reconnecting to a broker after the connection has been closed.
Type: integer
statistics.interval.ms * 0 .. 86400000 0 librdkafka statistics emit interval. The application also needs to register a stats callback using rd_kafka_conf_set_stats_cb(). The granularity is 1000ms. A value of 0 disables statistics.
Type: integer
enabled_events * 0 .. 2147483647 0 See rd_kafka_conf_set_events()
Type: integer
error_cb * Error callback (set with rd_kafka_conf_set_error_cb())
Type: pointer
throttle_cb * Throttle callback (set with rd_kafka_conf_set_throttle_cb())
Type: pointer
stats_cb * Statistics callback (set with rd_kafka_conf_set_stats_cb())
Type: pointer
log_cb * Log callback (set with rd_kafka_conf_set_log_cb())
Type: pointer
log_level * 0 .. 7 6 Logging level (syslog(3) levels)
Type: integer
log.queue * true, false false Disable spontaneous log_cb from internal librdkafka threads, instead enqueue log messages on queue set with rd_kafka_set_log_queue() and serve log callbacks or events through the standard poll APIs. NOTE: Log messages will linger in a temporary queue until the log queue has been set.
Type: boolean
log.thread.name * true, false true Print internal thread name in log messages (useful for debugging librdkafka internals)
Type: boolean
log.connection.close * true, false true Log broker disconnects. It might be useful to turn this off when interacting with 0.9 brokers with an aggressive connection.max.idle.ms value.
Type: boolean
background_event_cb * Background queue event callback (set with rd_kafka_conf_set_background_event_cb())
Type: pointer
socket_cb * Socket creation callback to provide race-free CLOEXEC
Type: pointer
connect_cb * Socket connect callback
Type: pointer
closesocket_cb * Socket close callback
Type: pointer
open_cb * File open callback to provide race-free CLOEXEC
Type: pointer
opaque * Application opaque (set with rd_kafka_conf_set_opaque())
Type: pointer
default_topic_conf * Default topic configuration for automatically subscribed topics
Type: pointer
internal.termination.signal * 0 .. 128 0 Signal that librdkafka will use to quickly terminate on rd_kafka_destroy(). If this signal is not set then there will be a delay before rd_kafka_wait_destroyed() returns true as internal threads are timing out their system calls. If this signal is set however the delay will be minimal. The application should mask this signal as an internal signal handler is installed.
Type: integer
api.version.request * true, false true Request broker's supported API versions to adjust functionality to available protocol features. If set to false, or the ApiVersionRequest fails, the fallback version broker.version.fallback will be used. NOTE: Depends on broker version >=0.10.0. If the request is not supported by (an older) broker the broker.version.fallback fallback is used.
Type: boolean
api.version.request.timeout.ms * 1 .. 300000 10000 Timeout for broker API version requests.
Type: integer
api.version.fallback.ms * 0 .. 604800000 1200000 Dictates how long the broker.version.fallback fallback is used in the case the ApiVersionRequest fails. NOTE: The ApiVersionRequest is only issued when a new connection to the broker is made (such as after an upgrade).
Type: integer
broker.version.fallback * 0.9.0 Older broker versions (before 0.10.0) provide no way for a client to query for supported protocol features (ApiVersionRequest, see api.version.request) making it impossible for the client to know what features it may use. As a workaround a user may set this property to the expected broker version and the client will automatically adjust its feature set accordingly if the ApiVersionRequest fails (or is disabled). The fallback broker version will be used for api.version.fallback.ms. Valid values are: 0.9.0, 0.8.2, 0.8.1, 0.8.0. Any other value, such as 0.10.2.1, enables ApiVersionRequests.
Type: string
security.protocol * plaintext, ssl, sasl_plaintext, sasl_ssl plaintext Protocol used to communicate with brokers.
Type: enum value
ssl.cipher.suites * A cipher suite is a named combination of authentication, encryption, MAC and key exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network protocol. See manual page for ciphers(1) and `SSL_CTX_set_cipher_list(3).
Type: string
ssl.curves.list * The supported-curves extension in the TLS ClientHello message specifies the curves (standard/named, or 'explicit' GF(2^k) or GF(p)) the client is willing to have the server use. See manual page for SSL_CTX_set1_curves_list(3). OpenSSL >= 1.0.2 required.
Type: string
ssl.sigalgs.list * The client uses the TLS ClientHello signature_algorithms extension to indicate to the server which signature/hash algorithm pairs may be used in digital signatures. See manual page for SSL_CTX_set1_sigalgs_list(3). OpenSSL >= 1.0.2 required.
Type: string
ssl.key.location * Path to client's private key (PEM) used for authentication.
Type: string
ssl.key.password * Private key passphrase
Type: string
ssl.certificate.location * Path to client's public key (PEM) used for authentication.
Type: string
ssl.ca.location * File or directory path to CA certificate(s) for verifying the broker's key.
Type: string
ssl.crl.location * Path to CRL for verifying broker's certificate validity.
Type: string
ssl.keystore.location * Path to client's keystore (PKCS#12) used for authentication.
Type: string
ssl.keystore.password * Client's keystore (PKCS#12) password.
Type: string
sasl.mechanisms * GSSAPI SASL mechanism to use for authentication. Supported: GSSAPI, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512. NOTE: Despite the name only one mechanism must be configured.
Type: string
sasl.mechanism * Alias for sasl.mechanisms
sasl.kerberos.service.name * kafka Kerberos principal name that Kafka runs as, not including /hostname@REALM
Type: string
sasl.kerberos.principal * kafkaclient This client's Kerberos principal name. (Not supported on Windows, will use the logon user's principal).
Type: string
sasl.kerberos.kinit.cmd * kinit -S "%{sasl.kerberos.service.name}/%{broker.name}" -k -t "%{sasl.kerberos.keytab}" %{sasl.kerberos.principal} Full kerberos kinit command string, %{config.prop.name} is replaced by corresponding config object value, %{broker.name} returns the broker's hostname.
Type: string
sasl.kerberos.keytab * Path to Kerberos keytab file. Uses system default if not set.NOTE: This is not automatically used but must be added to the template in sasl.kerberos.kinit.cmd as ... -t %{sasl.kerberos.keytab}.
Type: string
sasl.kerberos.min.time.before.relogin * 1 .. 86400000 60000 Minimum time in milliseconds between key refresh attempts.
Type: integer
sasl.username * SASL username for use with the PLAIN and SASL-SCRAM-.. mechanisms
Type: string
sasl.password * SASL password for use with the PLAIN and SASL-SCRAM-.. mechanism
Type: string
plugin.library.paths * List of plugin libraries to load (; separated). The library search path is platform dependent (see dlopen(3) for Unix and LoadLibrary() for Windows). If no filename extension is specified the platform-specific extension (such as .dll or .so) will be appended automatically.
Type: string
interceptors * Interceptors added through rd_kafka_conf_interceptor_add_..() and any configuration handled by interceptors.
*Type: *
group.id C Client group id string. All clients sharing the same group.id belong to the same group.
Type: string
partition.assignment.strategy C range,roundrobin Name of partition assignment strategy to use when elected group leader assigns partitions to group members.
Type: string
session.timeout.ms C 1 .. 3600000 10000 Client group session and failure detection timeout. The consumer sends periodic heartbeats (heartbeat.interval.ms) to indicate its liveness to the broker. If no hearts are received by the broker for a group member within the session timeout, the broker will remove the consumer from the group and trigger a rebalance. The allowed range is configured with the broker configuration properties group.min.session.timeout.ms and group.max.session.timeout.ms.
Type: integer
heartbeat.interval.ms C 1 .. 3600000 3000 Group session keepalive heartbeat interval.
Type: integer
group.protocol.type C consumer Group protocol type
Type: string
coordinator.query.interval.ms C 1 .. 3600000 600000 How often to query for the current client group coordinator. If the currently assigned coordinator is down the configured query interval will be divided by ten to more quickly recover in case of coordinator reassignment.
Type: integer
max.poll.interval.ms C 1 .. 86400000 300000 Maximum allowed time between calls to consume messages (e.g., rd_kafka_consumer_poll()) for high-level consumers. If this interval is exceeded the consumer is considered failed and the group will rebalance in order to reassign the partitions to another consumer group member. Warning: Offset commits may be not possible at this point. The interval is checked two times per second. See KIP-62 for more information.
Type: integer
enable.auto.commit C true, false true Automatically and periodically commit offsets in the background. Note: setting this to false does not prevent the consumer from fetching previously committed start offsets. To circumvent this behaviour set specific start offsets per partition in the call to assign().
Type: boolean
auto.commit.interval.ms C 0 .. 86400000 5000 The frequency in milliseconds that the consumer offsets are committed (written) to offset storage. (0 = disable). This setting is used by the high-level consumer.
Type: integer
enable.auto.offset.store C true, false true Automatically store offset of last message provided to application.
Type: boolean
queued.min.messages C 1 .. 10000000 100000 Minimum number of messages per topic+partition librdkafka tries to maintain in the local consumer queue.
Type: integer
queued.max.messages.kbytes C 1 .. 2097151 1048576 Maximum number of kilobytes per topic+partition in the local consumer queue. This value may be overshot by fetch.message.max.bytes. This property has higher priority than queued.min.messages.
Type: integer
fetch.wait.max.ms C 0 .. 300000 100 Maximum time the broker may wait to fill the response with fetch.min.bytes.
Type: integer
fetch.message.max.bytes C 1 .. 1000000000 1048576 Initial maximum number of bytes per topic+partition to request when fetching messages from the broker. If the client encounters a message larger than this value it will gradually try to increase it until the entire message can be fetched.
Type: integer
max.partition.fetch.bytes C Alias for fetch.message.max.bytes
fetch.max.bytes C 0 .. 2147483135 52428800 Maximum amount of data the broker shall return for a Fetch request. Messages are fetched in batches by the consumer and if the first message batch in the first non-empty partition of the Fetch request is larger than this value, then the message batch will still be returned to ensure the consumer can make progress. The maximum message batch size accepted by the broker is defined via message.max.bytes (broker config) or max.message.bytes (broker topic config). fetch.max.bytes is automatically adjusted upwards to be at least message.max.bytes (consumer config).
Type: integer
fetch.min.bytes C 1 .. 100000000 1 Minimum number of bytes the broker responds with. If fetch.wait.max.ms expires the accumulated data will be sent to the client regardless of this setting.
Type: integer
fetch.error.backoff.ms C 0 .. 300000 500 How long to postpone the next fetch request for a topic+partition in case of a fetch error.
Type: integer
offset.store.method C none, file, broker broker Offset commit store method: 'file' - local file store (offset.store.path, et.al), 'broker' - broker commit store (requires Apache Kafka 0.8.2 or later on the broker).
Type: enum value
consume_cb C Message consume callback (set with rd_kafka_conf_set_consume_cb())
Type: pointer
rebalance_cb C Called after consumer group has been rebalanced (set with rd_kafka_conf_set_rebalance_cb())
Type: pointer
offset_commit_cb C Offset commit result propagation callback. (set with rd_kafka_conf_set_offset_commit_cb())
Type: pointer
enable.partition.eof C true, false true Emit RD_KAFKA_RESP_ERR__PARTITION_EOF event whenever the consumer reaches the end of a partition.
Type: boolean
check.crcs C true, false false Verify CRC32 of consumed messages, ensuring no on-the-wire or on-disk corruption to the messages occurred. This check comes at slightly increased CPU usage.
Type: boolean
enable.idempotence P true, false false When set to true, the producer will ensure that messages are successfully produced exactly once and in the original produce order. The following configuration properties are adjusted automatically (if not modified by the user) when idempotence is enabled: max.inflight.requests.per.connection=5 (must be less than or equal to 5), retries=INT32_MAX (must be greater than 0), acks=all, queuing.strategy=fifo. Producer instantation will fail if user-supplied configuration is incompatible.
Type: boolean
enable.gapless.guarantee P true, false true When set to true, any error that could result in a gap in the produced message series when a batch of messages fails, will raise a fatal error (ERR__GAPLESS_GUARANTEE) and stop the producer. Requires enable.idempotence=true.
Type: boolean
queue.buffering.max.messages P 1 .. 10000000 100000 Maximum number of messages allowed on the producer queue.
Type: integer
queue.buffering.max.kbytes P 1 .. 2097151 1048576 Maximum total message size sum allowed on the producer queue. This property has higher priority than queue.buffering.max.messages.
Type: integer
queue.buffering.max.ms P 0 .. 900000 0 Delay in milliseconds to wait for messages in the producer queue to accumulate before constructing message batches (MessageSets) to transmit to brokers. A higher value allows larger and more effective (less overhead, improved compression) batches of messages to accumulate at the expense of increased message delivery latency.
Type: integer
linger.ms P Alias for queue.buffering.max.ms
message.send.max.retries P 0 .. 10000000 2 How many times to retry sending a failing MessageSet. Note: retrying may cause reordering.
Type: integer
retries P Alias for message.send.max.retries
retry.backoff.ms P 1 .. 300000 100 The backoff time in milliseconds before retrying a protocol request.
Type: integer
queue.buffering.backpressure.threshold P 1 .. 1000000 1 The threshold of outstanding not yet transmitted broker requests needed to backpressure the producer's message accumulator. If the number of not yet transmitted requests equals or exceeds this number, produce request creation that would have otherwise been triggered (for example, in accordance with linger.ms) will be delayed. A lower number yields larger and more effective batches. A higher value can improve latency when using compression on slow machines.
Type: integer
compression.codec P none, gzip, snappy, lz4, zstd none compression codec to use for compressing message sets. This is the default value for all topics, may be overridden by the topic configuration property compression.codec.
Type: enum value
compression.type P Alias for compression.codec
batch.num.messages P 1 .. 1000000 10000 Maximum number of messages batched in one MessageSet. The total MessageSet size is also limited by message.max.bytes.
Type: integer
delivery.report.only.error P true, false false Only provide delivery reports for failed messages.
Type: boolean
dr_cb P Delivery report callback (set with rd_kafka_conf_set_dr_cb())
Type: pointer
dr_msg_cb P Delivery report callback (set with rd_kafka_conf_set_dr_msg_cb())
Type: pointer

Topic configuration properties

Property C/P Range Default Description
request.required.acks P -1 .. 1000 1 This field indicates how many acknowledgements the leader broker must receive from ISR brokers before responding to the request: 0=Broker does not send any response/ack to client, 1=Only the leader broker will need to ack the message, -1 or all=broker will block until message is committed by all in sync replicas (ISRs) or broker's min.insync.replicas setting before sending response.
Type: integer
acks P Alias for request.required.acks
request.timeout.ms P 1 .. 900000 5000 The ack timeout of the producer request in milliseconds. This value is only enforced by the broker and relies on request.required.acks being != 0.
Type: integer
message.timeout.ms P 0 .. 900000 300000 Local message timeout. This value is only enforced locally and limits the time a produced message waits for successful delivery. A time of 0 is infinite. This is the maximum time librdkafka may use to deliver a message (including retries). Delivery error occurs when either the retry count or the message timeout are exceeded.
Type: integer
queuing.strategy P fifo, lifo fifo Producer queuing strategy. FIFO preserves produce ordering, while LIFO prioritizes new messages. WARNING: lifo is experimental and subject to change or removal.
Type: enum value
produce.offset.report P true, false false DEPRECATED No longer used.
Type: boolean
partitioner P consistent_random Partitioner: random - random distribution, consistent - CRC32 hash of key (Empty and NULL keys are mapped to single partition), consistent_random - CRC32 hash of key (Empty and NULL keys are randomly partitioned), murmur2 - Java Producer compatible Murmur2 hash of key (NULL keys are mapped to single partition), murmur2_random - Java Producer compatible Murmur2 hash of key (NULL keys are randomly partitioned. This is functionally equivalent to the default partitioner in the Java Producer.).
Type: string
partitioner_cb P Custom partitioner callback (set with rd_kafka_topic_conf_set_partitioner_cb())
Type: pointer
msg_order_cmp P Message queue ordering comparator (set with rd_kafka_topic_conf_set_msg_order_cmp()). Also see queuing.strategy.
Type: pointer
opaque * Application opaque (set with rd_kafka_topic_conf_set_opaque())
Type: pointer
compression.codec P none, gzip, snappy, lz4, zstd, inherit inherit Compression codec to use for compressing message sets. inherit = inherit global compression.codec configuration.
Type: enum value
compression.type P Alias for compression.codec
compression.level P -1 .. 12 -1 Compression level parameter for algorithm selected by configuration property compression.codec. Higher values will result in better compression at the cost of more CPU usage. Usable range is algorithm-dependent: [0-9] for gzip; [0-12] for lz4; only 0 for snappy; -1 = codec-dependent default compression level.
Type: integer
auto.commit.enable C true, false true [LEGACY PROPERTY: This property is used by the simple legacy consumer only. When using the high-level KafkaConsumer, the global enable.auto.commit property must be used instead]. If true, periodically commit offset of the last message handed to the application. This committed offset will be used when the process restarts to pick up where it left off. If false, the application will have to call rd_kafka_offset_store() to store an offset (optional). NOTE: There is currently no zookeeper integration, offsets will be written to broker or local file according to offset.store.method.
Type: boolean
enable.auto.commit C Alias for auto.commit.enable
auto.commit.interval.ms C 10 .. 86400000 60000 [LEGACY PROPERTY: This setting is used by the simple legacy consumer only. When using the high-level KafkaConsumer, the global auto.commit.interval.ms property must be used instead]. The frequency in milliseconds that the consumer offsets are committed (written) to offset storage.
Type: integer
auto.offset.reset C smallest, earliest, beginning, largest, latest, end, error largest Action to take when there is no initial offset in offset store or the desired offset is out of range: 'smallest','earliest' - automatically reset the offset to the smallest offset, 'largest','latest' - automatically reset the offset to the largest offset, 'error' - trigger an error which is retrieved by consuming messages and checking 'message->err'.
Type: enum value
offset.store.path C . Path to local file for storing offsets. If the path is a directory a filename will be automatically generated in that directory based on the topic and partition.
Type: string
offset.store.sync.interval.ms C -1 .. 86400000 -1 fsync() interval for the offset file, in milliseconds. Use -1 to disable syncing, and 0 for immediate sync after each write.
Type: integer
offset.store.method C file, broker broker Offset commit store method: 'file' - local file store (offset.store.path, et.al), 'broker' - broker commit store (requires "group.id" to be configured and Apache Kafka 0.8.2 or later on the broker.).
Type: enum value
consume.callback.max.messages C 0 .. 1000000 0 Maximum number of messages to dispatch in one rd_kafka_consume_callback*() call (0 = unlimited)
Type: integer

C/P legend: C = Consumer, P = Producer, * = both