-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathpreprocess_dataset.py
799 lines (661 loc) · 31.8 KB
/
preprocess_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
from abc import ABC, abstractmethod
import argparse
from dataclasses import dataclass, field
from enum import Enum, auto
from functools import partial
from multiprocessing import get_context
from pathlib import Path
import shutil
import sys
sys.path.append('../..')
from typing import Any, Dict, List, Optional, Tuple, Union
import weakref
import h5py
from numba import jit
import numpy as np
from omegaconf import OmegaConf, DictConfig, MISSING
import torch
from tqdm import tqdm
from utils.preprocessing import _blosc_opts
from data.utils.representations import MixedDensityEventStack, StackedHistogram, RepresentationBase
class DataKeys(Enum):
InNPY = auto()
InH5 = auto()
OutLabelDir = auto()
OutEvReprDir = auto()
SplitType = auto()
class SplitType(Enum):
TRAIN = auto()
VAL = auto()
TEST = auto()
split_name_2_type = {
'train': SplitType.TRAIN,
'val': SplitType.VAL,
'test': SplitType.TEST,
}
dataset_2_height = {'gen1': 240, 'gen4': 720}
dataset_2_width = {'gen1': 304, 'gen4': 1280}
# The following sequences would be discarded because all the labels would be removed after filtering:
dirs_to_ignore = {
'gen1': ('17-04-06_09-57-37_6344500000_6404500000',
'17-04-13_19-17-27_976500000_1036500000',
'17-04-06_15-14-36_1159500000_1219500000',
'17-04-11_15-13-23_122500000_182500000'),
'gen4': (),
}
class NoLabelsException(Exception):
# Raised when no labels are present anymore in the sequence after filtering
...
class H5Writer:
def __init__(self, outfile: Path, key: str, ev_repr_shape: Tuple, numpy_dtype: np.dtype):
assert len(ev_repr_shape) == 3
self.h5f = h5py.File(str(outfile), 'w')
self._finalizer = weakref.finalize(self, self.close_callback, self.h5f)
self.key = key
self.numpy_dtype = numpy_dtype
# create hdf5 datasets
maxshape = (None,) + ev_repr_shape
chunkshape = (1,) + ev_repr_shape
self.maxshape = maxshape
self.h5f.create_dataset(key, dtype=self.numpy_dtype.name, shape=chunkshape, chunks=chunkshape,
maxshape=maxshape, **_blosc_opts(complevel=1, shuffle='byte'))
self.t_idx = 0
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self._finalizer()
@staticmethod
def close_callback(h5f: h5py.File):
h5f.close()
def close(self):
self.h5f.close()
def get_current_length(self):
return self.t_idx
def add_data(self, data: np.ndarray):
assert data.dtype == self.numpy_dtype, f'{data.dtype=}, {self.numpy_dtype=}'
assert data.shape == self.maxshape[1:]
new_size = self.t_idx + 1
self.h5f[self.key].resize(new_size, axis=0)
self.h5f[self.key][self.t_idx:new_size] = data
self.t_idx = new_size
class H5Reader:
def __init__(self, h5_file: Path, dataset: str = 'gen4'):
assert h5_file.exists()
assert h5_file.suffix == '.h5'
assert dataset in {'gen1', 'gen4'}
self.h5f = h5py.File(str(h5_file), 'r')
self._finalizer = weakref.finalize(self, self._close_callback, self.h5f)
self.is_open = True
try:
self.height = self.h5f['events']['height'][()].item()
self.width = self.h5f['events']['width'][()].item()
except KeyError:
self.height = dataset_2_height[dataset]
self.width = dataset_2_width[dataset]
self.all_times = None
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self._finalizer()
@staticmethod
def _close_callback(h5f: h5py.File):
h5f.close()
def close(self):
self.h5f.close()
self.is_open = False
def get_height_and_width(self) -> Tuple[int, int]:
return self.height, self.width
@property
def time(self) -> np.ndarray:
# We need to lazy load time because it is typically not sorted everywhere.
# - Set timestamps of events such they are not decreasing.
assert self.is_open
if self.all_times is None:
self.all_times = np.asarray(self.h5f['events']['t'])
self._correct_time(self.all_times)
return self.all_times
@staticmethod
@jit(nopython=True)
def _correct_time(time_array: np.ndarray):
assert time_array[0] >= 0
time_last = 0
for idx, time in enumerate(time_array):
if time < time_last:
time_array[idx] = time_last
else:
time_last = time
def get_event_slice(self, idx_start: int, idx_end: int, convert_2_torch: bool = True):
assert self.is_open
assert idx_end >= idx_start
ev_data = self.h5f['events']
x_array = np.asarray(ev_data['x'][idx_start:idx_end], dtype='int64')
y_array = np.asarray(ev_data['y'][idx_start:idx_end], dtype='int64')
p_array = np.asarray(ev_data['p'][idx_start:idx_end], dtype='int64')
p_array = np.clip(p_array, a_min=0, a_max=None)
t_array = np.asarray(self.time[idx_start:idx_end], dtype='int64')
assert np.all(t_array[:-1] <= t_array[1:])
ev_data = dict(
x=x_array if not convert_2_torch else torch.from_numpy(x_array),
y=y_array if not convert_2_torch else torch.from_numpy(y_array),
p=p_array if not convert_2_torch else torch.from_numpy(p_array),
t=t_array if not convert_2_torch else torch.from_numpy(t_array),
height=self.height,
width=self.width,
)
return ev_data
def prophesee_bbox_filter(labels: np.ndarray, dataset_type: str) -> np.ndarray:
assert dataset_type in {'gen1', 'gen4'}
# Default values taken from: https://github.com/prophesee-ai/prophesee-automotive-dataset-toolbox/blob/0393adea2bf22d833893c8cb1d986fcbe4e6f82d/src/psee_evaluator.py#L23-L24
min_box_diag = 60 if dataset_type == 'gen4' else 30
# Corrected values from supplementary mat from paper for min_box_side!
min_box_side = 20 if dataset_type == 'gen4' else 10
w_lbl = labels['w']
h_lbl = labels['h']
diag_ok = w_lbl ** 2 + h_lbl ** 2 >= min_box_diag ** 2
side_ok = (w_lbl >= min_box_side) & (h_lbl >= min_box_side)
keep = diag_ok & side_ok
labels = labels[keep]
return labels
def conservative_bbox_filter(labels: np.ndarray) -> np.ndarray:
w_lbl = labels['w']
h_lbl = labels['h']
min_box_side = 5
side_ok = (w_lbl >= min_box_side) & (h_lbl >= min_box_side)
labels = labels[side_ok]
return labels
def remove_faulty_huge_bbox_filter(labels: np.ndarray, dataset_type: str) -> np.ndarray:
"""There are some labels which span the frame horizontally without actually covering an object."""
assert dataset_type in {'gen1', 'gen4'}
w_lbl = labels['w']
max_width = (9 * dataset_2_width[dataset_type]) // 10
side_ok = (w_lbl <= max_width)
labels = labels[side_ok]
return labels
def crop_to_fov_filter(labels: np.ndarray, dataset_type: str) -> np.ndarray:
assert dataset_type in {'gen1', 'gen4'}, f'{dataset_type=}'
# In the gen1 and gen4 datasets the bounding box can be partially or completely outside the frame.
# We fix this labeling error by cropping to the FOV.
frame_height = dataset_2_height[dataset_type]
frame_width = dataset_2_width[dataset_type]
x_left = labels['x']
y_top = labels['y']
x_right = x_left + labels['w']
y_bottom = y_top + labels['h']
x_left_cropped = np.clip(x_left, a_min=0, a_max=frame_width - 1)
y_top_cropped = np.clip(y_top, a_min=0, a_max=frame_height - 1)
x_right_cropped = np.clip(x_right, a_min=0, a_max=frame_width - 1)
y_bottom_cropped = np.clip(y_bottom, a_min=0, a_max=frame_height - 1)
w_cropped = x_right_cropped - x_left_cropped
assert np.all(w_cropped >= 0)
h_cropped = y_bottom_cropped - y_top_cropped
assert np.all(h_cropped >= 0)
labels['x'] = x_left_cropped
labels['y'] = y_top_cropped
labels['w'] = w_cropped
labels['h'] = h_cropped
# Remove bboxes that have 0 height or width
keep = (labels['w'] > 0) & (labels['h'] > 0)
labels = labels[keep]
return labels
def prophesee_remove_labels_filter_gen4(labels: np.ndarray) -> np.ndarray:
# Original gen4 labels: pedestrian, two wheeler, car, truck, bus, traffic sign, traffic light
# gen4 labels to keep: pedestrian, two wheeler, car
# gen4 labels to remove: truck, bus, traffic sign, traffic light
#
# class_id in {0, 1, 2, 3, 4, 5, 6} in the order mentioned above
keep = labels['class_id'] <= 2
labels = labels[keep]
return labels
def apply_filters(labels: np.ndarray,
split_type: SplitType,
filter_cfg: DictConfig,
dataset_type: str = 'gen1') -> np.ndarray:
assert isinstance(dataset_type, str)
if dataset_type == 'gen4':
labels = prophesee_remove_labels_filter_gen4(labels=labels)
labels = crop_to_fov_filter(labels=labels, dataset_type=dataset_type)
if filter_cfg.apply_psee_bbox_filter:
labels = prophesee_bbox_filter(labels=labels, dataset_type=dataset_type)
else:
labels = conservative_bbox_filter(labels=labels)
if split_type == SplitType.TRAIN and filter_cfg.apply_faulty_bbox_filter:
labels = remove_faulty_huge_bbox_filter(labels=labels, dataset_type=dataset_type)
return labels
def get_base_delta_ts_for_labels_us(unique_label_ts_us: np.ndarray, dataset_type: str = 'gen1') -> int:
if dataset_type == 'gen1':
delta_t_us_4hz = 250000
return delta_t_us_4hz
assert dataset_type == 'gen4'
diff_us = np.diff(unique_label_ts_us)
median_diff_us = np.median(diff_us)
hz = int(np.rint(10 ** 6 / median_diff_us))
assert hz in {30, 60}, f'{hz=} but should be either 30 or 60'
delta_t_us_approx_10hz = int(6 * median_diff_us if hz == 60 else 3 * median_diff_us)
return delta_t_us_approx_10hz
def save_labels(out_labels_dir: Path,
labels_per_frame: List[np.ndarray],
frame_timestamps_us: np.ndarray,
match_if_exists: bool = True) -> None:
assert len(labels_per_frame) == len(frame_timestamps_us)
assert len(labels_per_frame) > 0
labels_v2 = list()
objframe_idx_2_label_idx = list()
start_idx = 0
for labels, timestamp in zip(labels_per_frame, frame_timestamps_us):
objframe_idx_2_label_idx.append(start_idx)
labels_v2.append(labels)
start_idx += len(labels)
assert len(labels_v2) == len(objframe_idx_2_label_idx)
labels_v2 = np.concatenate(labels_v2)
outfile_labels = out_labels_dir / 'labels.npz'
if outfile_labels.exists() and match_if_exists:
data_existing = np.load(str(outfile_labels))
labels_existing = data_existing['labels']
assert np.array_equal(labels_existing, labels_v2)
oi_2_li_existing = data_existing['objframe_idx_2_label_idx']
assert np.array_equal(oi_2_li_existing, objframe_idx_2_label_idx)
else:
np.savez(str(outfile_labels), labels=labels_v2, objframe_idx_2_label_idx=objframe_idx_2_label_idx)
out_labels_ts_file = out_labels_dir / 'timestamps_us.npy'
if out_labels_ts_file.exists() and match_if_exists:
frame_timestamps_us_existing = np.load(str(out_labels_ts_file))
assert np.array_equal(frame_timestamps_us_existing, frame_timestamps_us)
else:
np.save(str(out_labels_ts_file), frame_timestamps_us)
def labels_and_ev_repr_timestamps(npy_file: Path,
split_type: SplitType,
filter_cfg: DictConfig,
align_t_ms: int,
ts_step_ev_repr_ms: int,
dataset_type: str):
assert npy_file.exists()
assert npy_file.suffix == '.npy'
ts_step_frame_ms = 100
assert ts_step_frame_ms >= ts_step_ev_repr_ms
assert ts_step_frame_ms % ts_step_ev_repr_ms == 0 and ts_step_ev_repr_ms > 0
align_t_us = align_t_ms * 1000
delta_t_us = ts_step_ev_repr_ms * 1000
sequence_labels = np.load(str(npy_file))
assert len(sequence_labels) > 0
sequence_labels = apply_filters(labels=sequence_labels,
split_type=split_type,
filter_cfg=filter_cfg,
dataset_type=dataset_type)
if sequence_labels.size == 0:
raise NoLabelsException
unique_ts_us = np.unique(np.asarray(sequence_labels['t'], dtype='int64'))
base_delta_ts_labels_us = get_base_delta_ts_for_labels_us(
unique_label_ts_us=unique_ts_us, dataset_type=dataset_type)
# We extract the first label at or after align_t_us to keep it as the reference for the label extraction.
unique_ts_idx_first = np.searchsorted(unique_ts_us, align_t_us, side='left')
# Extract "frame" timestamps from labels and prepare ev repr ts computation
num_ev_reprs_between_frame_ts = []
frame_timestamps_us = [unique_ts_us[unique_ts_idx_first]]
for unique_ts_idx in range(unique_ts_idx_first + 1, len(unique_ts_us)):
reference_time = frame_timestamps_us[-1]
ts = unique_ts_us[unique_ts_idx]
diff_to_ref = ts - reference_time
base_delta_count = round(diff_to_ref / base_delta_ts_labels_us)
diff_to_ref_rounded = base_delta_count * base_delta_ts_labels_us
if np.abs(diff_to_ref - diff_to_ref_rounded) <= 2000:
assert base_delta_count > 0
# We accept up to 2 millisecond of jitter
frame_timestamps_us.append(ts)
num_ev_reprs_between_frame_ts.append(base_delta_count * (ts_step_frame_ms // ts_step_ev_repr_ms))
frame_timestamps_us = np.asarray(frame_timestamps_us, dtype='int64')
assert len(frame_timestamps_us) > 0, f'{npy_file=}'
start_indices_per_label = np.searchsorted(sequence_labels['t'], frame_timestamps_us, side='left')
end_indices_per_label = np.searchsorted(sequence_labels['t'], frame_timestamps_us, side='right')
# Create labels per "frame"
labels_per_frame = []
for idx_start, idx_end in zip(start_indices_per_label, end_indices_per_label):
labels = sequence_labels[idx_start:idx_end]
label_time_us = labels['t'][0]
assert np.all(labels['t'] == label_time_us)
labels_per_frame.append(labels)
if len(frame_timestamps_us) > 1:
assert np.diff(frame_timestamps_us).min() > 98000, f'{np.diff(frame_timestamps_us).min()=}'
# Event repr timestamps generation
ev_repr_timestamps_us_end = list(reversed(range(frame_timestamps_us[0], 0, -delta_t_us)))[1:-1]
assert len(num_ev_reprs_between_frame_ts) == len(
frame_timestamps_us) - 1, f'{len(num_ev_reprs_between_frame_ts)=}, {len(frame_timestamps_us)=}'
for idx, (num_ev_repr_between, frame_ts_us_start, frame_ts_us_end) in enumerate(zip(
num_ev_reprs_between_frame_ts, frame_timestamps_us[:-1], frame_timestamps_us[1:])):
new_edge_timestamps = np.asarray(np.linspace(frame_ts_us_start, frame_ts_us_end, num_ev_repr_between + 1),
dtype='int64').tolist()
is_last_iter = idx == len(num_ev_reprs_between_frame_ts) - 1
if not is_last_iter:
new_edge_timestamps = new_edge_timestamps[:-1]
ev_repr_timestamps_us_end.extend(new_edge_timestamps)
if len(frame_timestamps_us) == 1:
# special case not handled in above for loop (no iter in this case)
# yes, it's hacky ...
ev_repr_timestamps_us_end.append(frame_timestamps_us[0])
ev_repr_timestamps_us_end = np.asarray(ev_repr_timestamps_us_end, dtype='int64')
frameidx_2_repridx = np.searchsorted(ev_repr_timestamps_us_end, frame_timestamps_us, side='left')
assert len(frameidx_2_repridx) == len(frame_timestamps_us)
# Some sanity checks:
assert len(labels_per_frame) == len(frame_timestamps_us)
assert len(frame_timestamps_us) == len(frameidx_2_repridx)
for label, frame_ts_us, repr_idx in zip(labels_per_frame, frame_timestamps_us, frameidx_2_repridx):
assert label['t'][0] == frame_ts_us
assert frame_ts_us == ev_repr_timestamps_us_end[repr_idx]
return labels_per_frame, frame_timestamps_us, ev_repr_timestamps_us_end, frameidx_2_repridx
def write_event_data(in_h5_file: Path,
ev_out_dir: Path,
dataset: str,
event_representation: RepresentationBase,
ev_repr_num_events: Optional[int],
ev_repr_delta_ts_ms: Optional[int],
ev_repr_timestamps_us: np.ndarray,
downsample_by_2: bool,
frameidx2repridx: np.ndarray) -> None:
frameidx2repridx_file = ev_out_dir / 'objframe_idx_2_repr_idx.npy'
if frameidx2repridx_file.exists():
frameidx2repridx_loaded = np.load(str(frameidx2repridx_file))
assert np.array_equal(frameidx2repridx_loaded, frameidx2repridx)
else:
np.save(str(frameidx2repridx_file), frameidx2repridx)
timestamps_file = ev_out_dir / 'timestamps_us.npy'
if timestamps_file.exists():
timestamps_loaded = np.load(str(timestamps_file))
assert np.array_equal(timestamps_loaded, ev_repr_timestamps_us)
else:
np.save(str(timestamps_file), ev_repr_timestamps_us)
write_event_representations(in_h5_file=in_h5_file,
ev_out_dir=ev_out_dir,
dataset=dataset,
event_representation=event_representation,
ev_repr_num_events=ev_repr_num_events,
ev_repr_delta_ts_ms=ev_repr_delta_ts_ms,
ev_repr_timestamps_us=ev_repr_timestamps_us,
downsample_by_2=downsample_by_2,
overwrite_if_exists=False)
def downsample_ev_repr(x: torch.Tensor, scale_factor: float):
assert 0 < scale_factor < 1
orig_dtype = x.dtype
if orig_dtype == torch.int8:
x = torch.asarray(x, dtype=torch.int16)
x = torch.asarray(x + 128, dtype=torch.uint8)
x = torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode='nearest-exact')
if orig_dtype == torch.int8:
x = torch.asarray(x, dtype=torch.int16)
x = torch.asarray(x - 128, dtype=torch.int8)
return x
def write_event_representations(in_h5_file: Path,
ev_out_dir: Path,
dataset: str,
event_representation: RepresentationBase,
ev_repr_num_events: Optional[int],
ev_repr_delta_ts_ms: Optional[int],
ev_repr_timestamps_us: np.ndarray,
downsample_by_2: bool,
overwrite_if_exists: bool = False) -> None:
ev_outfile = ev_out_dir / f"event_representations{'_ds2_nearest' if downsample_by_2 else ''}.h5"
if ev_outfile.exists() and not overwrite_if_exists:
return
ev_outfile_in_progress = ev_outfile.parent / (ev_outfile.stem + '_in_progress' + ev_outfile.suffix)
if ev_outfile_in_progress.exists():
os.remove(ev_outfile_in_progress)
ev_repr_shape = tuple(event_representation.get_shape())
if downsample_by_2:
ev_repr_shape = ev_repr_shape[0], ev_repr_shape[1] // 2, ev_repr_shape[2] // 2
ev_repr_dtype = event_representation.get_numpy_dtype()
with H5Reader(in_h5_file, dataset=dataset) as h5_reader, \
H5Writer(ev_outfile_in_progress,
key='data',
ev_repr_shape=ev_repr_shape,
numpy_dtype=ev_repr_dtype) as h5_writer:
height, width = h5_reader.get_height_and_width()
if downsample_by_2:
assert (height // 2, width // 2) == ev_repr_shape[-2:]
else:
assert (height, width) == ev_repr_shape[-2:]
ev_ts_us = h5_reader.time
end_indices = np.searchsorted(ev_ts_us, ev_repr_timestamps_us, side='right')
if ev_repr_num_events is not None:
start_indices = np.maximum(end_indices - ev_repr_num_events, 0)
else:
assert ev_repr_delta_ts_ms is not None
start_indices = np.searchsorted(ev_ts_us, ev_repr_timestamps_us - ev_repr_delta_ts_ms * 1000, side='left')
for idx_start, idx_end in zip(start_indices, end_indices):
ev_window = h5_reader.get_event_slice(idx_start=idx_start, idx_end=idx_end)
ev_repr = event_representation.construct(x=ev_window['x'],
y=ev_window['y'],
pol=ev_window['p'],
time=ev_window['t'])
if downsample_by_2:
ev_repr = ev_repr.unsqueeze(0)
ev_repr = downsample_ev_repr(x=ev_repr, scale_factor=0.5)
ev_repr_numpy = ev_repr.numpy()[0]
else:
ev_repr_numpy = ev_repr.numpy()
h5_writer.add_data(ev_repr_numpy)
num_written_ev_repr = h5_writer.get_current_length()
assert num_written_ev_repr == len(ev_repr_timestamps_us)
os.rename(ev_outfile_in_progress, ev_outfile)
def process_sequence(dataset: str,
filter_cfg: DictConfig,
event_representation: RepresentationBase,
ev_repr_num_events: Optional[int],
ev_repr_delta_ts_ms: Optional[int],
ts_step_ev_repr_ms: int,
downsample_by_2: bool,
sequence_data: Dict[DataKeys, Union[Path, SplitType]]):
in_npy_file = sequence_data[DataKeys.InNPY]
in_h5_file = sequence_data[DataKeys.InH5]
out_labels_dir = sequence_data[DataKeys.OutLabelDir]
out_ev_repr_dir = sequence_data[DataKeys.OutEvReprDir]
split_type = sequence_data[DataKeys.SplitType]
assert out_labels_dir.is_dir()
assert ts_step_ev_repr_ms > 0
assert bool(ev_repr_num_events is not None) ^ bool(ev_repr_delta_ts_ms is not None), \
f'{ev_repr_num_events=}, {ev_repr_delta_ts_ms=}'
# 1) extract: labels_per_frame, frame_timestamps_us, ev_repr_timestamps_us, frameidx2repridx
align_t_ms = 100
try:
labels_per_frame, frame_timestamps_us, ev_repr_timestamps_us, frameidx2repridx = \
labels_and_ev_repr_timestamps(
npy_file=in_npy_file,
split_type=split_type,
filter_cfg=filter_cfg,
align_t_ms=align_t_ms,
ts_step_ev_repr_ms=ts_step_ev_repr_ms,
dataset_type=dataset)
except NoLabelsException:
parent_dir = out_labels_dir.parent
print(f'No labels after filtering. Deleting {str(parent_dir)}')
shutil.rmtree(parent_dir)
return
# 2) save: labels_per_frame, frame_timestamps_us
save_labels(out_labels_dir=out_labels_dir,
labels_per_frame=labels_per_frame,
frame_timestamps_us=frame_timestamps_us)
# 3) retrieve event data, compute event representations and save them
write_event_data(in_h5_file=in_h5_file,
ev_out_dir=out_ev_repr_dir,
dataset=dataset,
event_representation=event_representation,
ev_repr_num_events=ev_repr_num_events,
ev_repr_delta_ts_ms=ev_repr_delta_ts_ms,
ev_repr_timestamps_us=ev_repr_timestamps_us,
downsample_by_2=downsample_by_2,
frameidx2repridx=frameidx2repridx)
class AggregationType(Enum):
COUNT = auto()
DURATION = auto()
aggregation_2_string = {
AggregationType.DURATION: 'dt',
AggregationType.COUNT: 'ne',
}
@dataclass
class FilterConf:
apply_psee_bbox_filter: bool = MISSING
apply_faulty_bbox_filter: bool = MISSING
@dataclass
class EventWindowExtractionConf:
method: AggregationType = MISSING
value: int = MISSING
@dataclass
class StackedHistogramConf:
name: str = MISSING
nbins: int = MISSING
count_cutoff: Optional[int] = MISSING
event_window_extraction: EventWindowExtractionConf = field(default_factory=EventWindowExtractionConf)
fastmode: bool = True
@dataclass
class MixedDensityEventStackConf:
name: str = MISSING
nbins: int = MISSING
count_cutoff: Optional[int] = MISSING
event_window_extraction: EventWindowExtractionConf = field(default_factory=EventWindowExtractionConf)
name_2_structured_config = {
'stacked_histogram': StackedHistogramConf,
'mixeddensity_stack': MixedDensityEventStackConf,
}
class EventRepresentationFactory(ABC):
def __init__(self, config: DictConfig):
self.config = config
@property
@abstractmethod
def name(self) -> str:
...
@abstractmethod
def create(self, height: int, width: int) -> Any:
...
class StackedHistogramFactory(EventRepresentationFactory):
@property
def name(self) -> str:
extraction = self.config.event_window_extraction
return f'{self.config.name}_{aggregation_2_string[extraction.method]}={extraction.value}_nbins={self.config.nbins}'
def create(self, height: int, width: int) -> StackedHistogram:
return StackedHistogram(bins=self.config.nbins,
height=height,
width=width,
count_cutoff=self.config.count_cutoff,
fastmode=self.config.fastmode)
class MixedDensityStackFactory(EventRepresentationFactory):
@property
def name(self) -> str:
extraction = self.config.event_window_extraction
cutoff_str = f'_cutoff={self.config.count_cutoff}' if self.config.count_cutoff is not None else ''
return f'{self.config.name}_{aggregation_2_string[extraction.method]}={extraction.value}_nbins={self.config.nbins}{cutoff_str}'
def create(self, height: int, width: int) -> MixedDensityEventStack:
return MixedDensityEventStack(bins=self.config.nbins,
height=height,
width=width,
count_cutoff=self.config.count_cutoff)
name_2_ev_repr_factory = {
'stacked_histogram': StackedHistogramFactory,
'mixeddensity_stack': MixedDensityStackFactory,
}
def get_configuration(ev_repr_yaml_config: Path, extraction_yaml_config: Path) -> DictConfig:
config = OmegaConf.load(ev_repr_yaml_config)
event_window_extraction_config = OmegaConf.load(extraction_yaml_config)
event_window_extraction_config = OmegaConf.merge(OmegaConf.structured(EventWindowExtractionConf),
event_window_extraction_config)
config.event_window_extraction = event_window_extraction_config
config_schema = OmegaConf.structured(name_2_structured_config[config.name])
config = OmegaConf.merge(config_schema, config)
return config
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('input_dir')
parser.add_argument('target_dir')
parser.add_argument('ev_repr_yaml_config', help='Path to event representation yaml config file')
parser.add_argument('extraction_yaml_config', help='Path to event window extraction yaml config file')
parser.add_argument('bbox_filter_yaml_config', help='Path to bbox filter yaml config file')
parser.add_argument('-ds', '--dataset', default='gen1', help='gen1 or gen4')
parser.add_argument('-np', '--num_processes', type=int, default=1, help="Num proceesses to run in parallel")
args = parser.parse_args()
num_processes = args.num_processes
dataset = args.dataset
assert dataset in ('gen1', 'gen4')
downsample_by_2 = True if dataset == 'gen4' else False
config = get_configuration(ev_repr_yaml_config=Path(args.ev_repr_yaml_config),
extraction_yaml_config=Path(args.extraction_yaml_config))
bbox_filter_yaml_config = Path(args.bbox_filter_yaml_config)
assert bbox_filter_yaml_config.exists()
filter_cfg = OmegaConf.load(str(bbox_filter_yaml_config))
filter_cfg = OmegaConf.merge(OmegaConf.structured(FilterConf), filter_cfg)
print('')
print(OmegaConf.to_yaml(config))
ev_repr_factory: EventRepresentationFactory = name_2_ev_repr_factory[config.name](config)
height = dataset_2_height[args.dataset]
width = dataset_2_width[args.dataset]
ev_repr = ev_repr_factory.create(height=height, width=width)
ev_repr_string = ev_repr_factory.name
dataset_input_path = Path(args.input_dir)
train_path = dataset_input_path / 'train'
val_path = dataset_input_path / 'val'
test_path = dataset_input_path / 'test'
target_dir = Path(args.target_dir)
os.makedirs(target_dir, exist_ok=True)
assert train_path.exists(), f'{train_path=}'
assert val_path.exists(), f'{val_path=}'
assert test_path.exists(), f'{test_path=}'
seq_data_list = list()
for split in [train_path, val_path, test_path]:
split_out_dir = target_dir / split.name
os.makedirs(split_out_dir, exist_ok=True)
for npy_file in split.iterdir():
if npy_file.suffix != '.npy':
continue
h5f_path = npy_file.parent / (
npy_file.stem.split('bbox')[0] + f"td{'.dat' if dataset == 'gen1' else ''}.h5")
assert h5f_path.exists(), f'{h5f_path=}'
dir_name = npy_file.stem.split('_bbox')[0]
if dir_name in dirs_to_ignore[dataset]:
continue
out_seq_path = split_out_dir / dir_name
out_labels_path = out_seq_path / 'labels_v2'
os.makedirs(out_labels_path, exist_ok=True)
out_ev_repr_parent_path = out_seq_path / 'event_representations_v2'
out_ev_repr_path = out_ev_repr_parent_path / ev_repr_string
os.makedirs(out_ev_repr_path, exist_ok=True)
sequence_data = {
DataKeys.InNPY: npy_file,
DataKeys.InH5: h5f_path,
DataKeys.OutLabelDir: out_labels_path,
DataKeys.OutEvReprDir: out_ev_repr_path,
DataKeys.SplitType: split_name_2_type[split.name],
}
seq_data_list.append(sequence_data)
ev_repr_num_events = None
ev_repr_delta_ts_ms = None
if config.event_window_extraction.method == AggregationType.COUNT:
ev_repr_num_events = config.event_window_extraction.value
else:
assert config.event_window_extraction.method == AggregationType.DURATION
ev_repr_delta_ts_ms = config.event_window_extraction.value
ts_step_ev_repr_ms = 50 # Could be an argument of the script.
if num_processes > 1:
chunksize = 1
func = partial(process_sequence,
dataset,
filter_cfg,
ev_repr,
ev_repr_num_events,
ev_repr_delta_ts_ms,
ts_step_ev_repr_ms,
downsample_by_2)
with get_context('spawn').Pool(num_processes) as pool:
with tqdm(total=len(seq_data_list), desc='sequences') as pbar:
for _ in pool.imap_unordered(func, iterable=seq_data_list, chunksize=chunksize):
pbar.update()
else:
for entry in tqdm(seq_data_list, desc='sequences'):
process_sequence(dataset=dataset,
filter_cfg=filter_cfg,
event_representation=ev_repr,
ev_repr_num_events=ev_repr_num_events,
ev_repr_delta_ts_ms=ev_repr_delta_ts_ms,
ts_step_ev_repr_ms=ts_step_ev_repr_ms,
downsample_by_2=downsample_by_2,
sequence_data=entry)