Skip to content

Latest commit

 

History

History
185 lines (155 loc) · 8.21 KB

README.md

File metadata and controls

185 lines (155 loc) · 8.21 KB

BoIR: Box-Supervised Instance Representation for Multi-Person Pose Estimation

[Paper] [Proceeding]

BMVC 2023

BoIR is a new multi-person pose estimation method that adeptly addresses the challenges of instance disentanglement and instance detection simultaneously, without incurring any additional computational costs during inference.

  • Bbox Mask Loss effectively disentangles features by instances in the embedding space using a new embedding loss with spatially rich bounding box level supervision.
  • Auxiliary task heads enrich instance representation by sharing multiple aspects of the instance, while no additional computational cost is induced during inference.

Installation

1. Clone code

2. Create a conda environment for this repo

    conda create -n boir python=3.9.12
    conda activate boir

3. Install cuda toolkit 11.3

4. Install PyTorch 1.12.1 following official instruction, e.g.,

    pip3 install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

5. Install other dependency python packages

    pip install -r requirements.txt

CrowdPose setup:

CrowdPoseAPI=/path/to/clone/CrowdPoseapi
git clone https://github.com/Jeff-sjtu/CrowdPose.git $CrowdPoseAPI # if python version is 3.8 or lower
git clone https://github.com/uyoung-jeong/CrowdPose.git $CrowdPoseAPI # if python version is 3.9
cd $CrowdPoseAPI/crowdpose-api/PythonAPI
python3 setup.py install --user # old

Original crowdposeapi may fail to build if python version is 3.9

6. Prepare dataset

Download COCO , CrowdPose and OCHuman from website and put the zip file under the directory following below structure, (xxx.json) denotes their original name.

./data
|── coco
│   └── annotations
|   |   └──coco_train.json(person_keypoints_train2017.json)
|   |   └──coco_val.json(person_keypoints_val2017.json)
|   |   └──coco_test.json(image_info_test-dev2017.json)
|   └── images
|   |   └──train2017
|   |   |   └──000000000009.jpg
|   |   └──val2017
|   |   |   └──000000000139.jpg
|   |   └──test2017
|   |   |   └──000000000001.jpg
├── crowdpose
│   └── annotations
|   |   └──crowdpose_trainval.json(refer to DEKR, link:https://github.com/HRNet/DEKR)
|   |   └──crowdpose_test.json
|   └── images
|   |   └──100000.jpg
├── ochuman
│   └── annotations
|   |   └──ochuman_val.json(ochuman_coco_format_val_range_0.00_1.00.json)
|   |   └──ochuman_test.json(ochuman_coco_format_test_range_0.00_1.00.json)
|   └── images
|   |   └──000001.jpg

Usage

1. Download trained model

Follow below model directory structure.

./model
|── imagenet
│   └── hrnet_w32-36af842e.pth
│   └── hrnetv2_w48_imagenet_pretrained.pth
├── coco
│   └── w32.pth.tar
│   └── w48.pth.tar
├── crowdpose
│   └── w32.pth.tar
│   └── w48.pth.tar

2. Evaluate Model

Change the checkpoint path by modifying TEST.MODEL_FILE option in .yaml or command line.

--gpus option specifies the gpu ids for evaluation, multiple ids denotes multiple gpu evaluation.

# evaluate on coco val set with 2 gpus
python tools/valid.py --cfg experiments/coco_w32.yaml --gpus 0,1 TEST.MODEL_FILE model/coco/w32.pth.tar

# evaluate on coco test-dev set with 2 gpus (submit to codalab)
python tools/infer_coco_testdev.py --cfg experiments/coco_w32.yaml --gpus 0,1 TEST.MODEL_FILE model/coco/w32.pth.tar DATASET.TEST test

# evaluate on crowdpose test set with 2 gpus
python tools/valid.py --cfg experiments/crowdpose_w32.yaml --gpus 0,1 TEST.MODEL_FILE model/crowdpose/w32.pth.tar

# evaluate on ochuman test set with 2 gpus (trained on coco train set)
python tools/valid.py --cfg experiments/ochuman_w32.yaml --gpus 0,1 TEST.MODEL_FILE model/coco/w32.pth.tar

# evaluate on ochuman val set with 2 gpus (trained on coco train set)
python tools/valid.py --cfg experiments/ochuman_w32.yaml --gpus 0,1 TEST.MODEL_FILE model/coco/w32.pth.tar DATASET.TEST val

3. Train Model

You need to download imagenet pretrained HRNet models (see above) and change the checkpoint path by modifying MODEL.PRETRAINED in .yaml, and run following commands:

# train on coco with 4 gpus
python tools/train.py --cfg experiments/boir/coco_w32.yaml --gpus 0,1,2,3

# train on crowdpose with 4 gpus
python tools/train.py --cfg experiments/boir/crowdpose_w32.yaml --gpus 0,1,2,3

# finetune on crowdpose with 4 gpus
python tools/train.py --cfg experiments/boir/crowdpose_w32.yaml --gpus 0,1,2,3 TEST.MODEL_FILE model/coco/checkpoint_w32.pth.tar TRAIN.TRANSFER_DATASET True

To continue training:

python tools/train.py --cfg experiments/boir/coco_w32.yaml --gpus 0,1 --output_dir {path}

Main Results

Results on COCO val and test-dev set

Method Test set Backbone Input size AP AP.5 AP .75 AP (M) AP (L)
CID COCO val HRNet-W32 512 69.8 88.5 76.6 64.0 78.9
CID COCO test-dev HRNet-W32 512 69.1 89.9 76.3 63.4 77.6
BoIR COCO val HRNet-W32 512 70.6 89.2 77.4 65.1 79.0
BoIR COCO val HRNet-W48 640 72.5 89.9 79.1 68.2 79.4
BoIR COCO test-dev HRNet-W32 512 69.5 90.4 76.9 64.2 77.3
BoIR COCO test-dev HRNet-W48 640 71.2 90.8 78.6 67.0 77.6

Results on CrowdPose test set

Method Backbone Input size AP AP .5 AP .75 AP (E) AP (M) AP (H)
CID HRNet-W32 512 71.2 89.8 76.7 77.9 71.9 63.8
CID HRNet-W48 640 72.3 90.8 77.9 78.7 73.0 64.8
CID(finetune) HRNet-W32 512 74.9 91.8 81.0 82.0 75.8 66.3
BoIR HRNet-W32 512 70.6 89.9 76.5 77.1 71.2 63.0
BoIR HRNet-W48 640 71.2 90.3 76.7 77.8 71.8 63.5
BoIR(finetune) HRNet-W32 512 75.8 92.2 82.3 82.3 76.5 67.5
BoIR(finetune) HRNet-W48 640 77.2 92.4 83.5 82.7 78.1 69.8

Results on OCHuman dataset

Method Train set Test set Backbone Input size AP AP.5 AP .75 AR
CID COCO train OCHuman val HRNet-W32 512 45.7 58.8 51.1 78.3
CID COCO train OCHuman test HRNet-W32 512 44.6 57.5 49.3 78.0
BoIR COCO train OCHuman val HRNet-W32 512 47.4 60.0 52.6 80.1
BoIR COCO train OCHuman val HRNet-W48 640 49.4 62.3 54.9 80.8
BoIR COCO train OCHuman test HRNet-W32 512 47.0 59.7 52.3 80.3
BoIR COCO train OCHuman test HRNet-W48 640 48.5 61.3 54.1 80.7

Citation

@inproceedings{Jeong_2023_BMVC,
author    = {Uyoung Jeong and Seungryul Baek and Hyung Jin Chang and Kwang In Kim},
title     = {BoIR: Box-Supervised Instance Representation for Multi-Person Pose Estimation},
booktitle = {34th British Machine Vision Conference 2023, {BMVC} 2023, Aberdeen, UK, November 20-24, 2023},
publisher = {BMVA},
year      = {2023},
url       = {https://papers.bmvc2023.org/0763.pdf}
}

Acknowledgement

Our code is derived from: