-
Notifications
You must be signed in to change notification settings - Fork 40
/
gp.py
executable file
·426 lines (363 loc) · 18.4 KB
/
gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#! /usr/bin/env python
import logging
import random
import pickle
import os
import sys
import getopt
from lib.common import LOW_SCORE, finished_flag, visited_flag, result_flag, error_flag
from lib.common import touch, deepcopy
from lib.common import setup_logging
# Import PDFRW later for controling the logging format.
# Note: The original pdfw should be used in parsing the repacked seeds for efficiency.
# No, we have to use the modified version, due to the additional trace issue.
class GPPdf:
def __init__(self,
job_dir,
seed_sha1,
seed_file_path,
logger,
random_state_file_path,
ext_genome,
success_traces_path,
promising_traces_path,
gp_params,
fitness_function,
):
self.logger = logger
self.job_dir = job_dir
self.seed_sha1 = seed_sha1
# Load the pre-defined random state for reproducing the existing results.
if random_state_file_path:
try:
random_state = pickle.load(open(random_state_file_path, 'rb'))
random.setstate(random_state)
logger.debug("Loaded a random state from %s" % random_state_file_path)
except:
logger.warning("Failed to load random state from %s" % random_state_file_path)
# Save random state for reproducing results in the future.
random_state_file = os.path.join(self.job_dir, "random_state.pickle")
random_state = random.getstate()
pickle.dump(random_state, open(random_state_file, 'wb'))
self.fitness_func = fitness_function
# Load the seed.
self.seed_file_path = seed_file_path
self.seed_fitness = self.fitness([self.seed_file_path], self.seed_sha1)[0]
self.seed_root = PdfGenome.load_genome(seed_file_path)
self.logger.info("Loaded %s as PDF seed, fitness %.2f." % (seed_file_path, self.seed_fitness))
# Load the external genome.
self.ext_genome = ext_genome
# Load traces.
self.success_traces_path = success_traces_path
self.success_traces = Trace.load_traces(self.success_traces_path)
self.promising_traces_path = promising_traces_path
self.promising_traces = Trace.load_traces(self.promising_traces_path)
# Initiate some parameters.
self.gp_params = gp_params
self.pop_size = gp_params['pop_size']
self.max_gen = gp_params['max_gen']
self.mut_rate = gp_params['mut_rate']
self.xover_rate = gp_params['xover_rate']
self.fitness_threshold = gp_params['fitness_threshold']
def save_variants_to_files(self):
folder = "./variants/generation_%d" % (self.generation)
folder = os.path.join(self.job_dir, folder)
if not os.path.isdir(folder):
os.makedirs(folder)
file_paths = []
for j in range(len(self.popul)):
path = "./variants/generation_%d/%d.pdf" % (self.generation, j)
path = os.path.join(self.job_dir, path)
file_paths.append(path)
PdfGenome.save_to_file(self.popul[j], path)
return file_paths
def load_variant(self, gen, vid):
path = "./variants/generation_%d/%d.pdf" % (gen, vid)
path = os.path.join(self.job_dir, path)
pdf_obj = PdfGenome.load_genome(path)
return pdf_obj
def load_variant_trace(self, gen, vid):
path = "./variants/generation_%d/%d.pdf" % (gen, vid)
path = os.path.join(self.job_dir, path)
trace = PdfGenome.load_trace(path)
return trace
def fitness(self, *args):
return self.fitness_func(*args)
def run(self):
self.logger.info("Start a gp task with %s" % (self.gp_params))
score_file_name = os.path.join(self.job_dir, "fitness_scores.pickle")
self.fitness_scores = {}
self.popul = self.initial_population()
self.generation = 1
while self.generation <= self.max_gen:
self.logger.info("There're %d variants in population at generation %d." % (len(self.popul), self.generation))
file_paths = self.save_variants_to_files()
scores = self.fitness(file_paths, self.seed_sha1)
# Introduce a fake score for testing tracing.
# scores = [0.1, 0.2] * (self.pop_size/2)
self.fitness_scores[self.generation] = scores
pickle.dump(self.fitness_scores, open(score_file_name, 'wb'))
self.logger.info("Fitness scores: %s" % scores)
self.logger.info("Sorted fitness: %s" % sorted(scores, reverse=True))
if max(scores) > self.fitness_threshold:
self.best_score = max(scores)
self.logger.info("Already got a high score [%.2f]>%.2f variant, break the GP process." % (max(scores), self.fitness_threshold))
# Store the success traces.
for i in range(len(scores)):
score = scores[i]
if score > self.fitness_threshold:
success_trace = self.popul[i].active_trace
self.success_traces.append(success_trace)
# Dump the new generated traces.
# We assume no concurrent GP tasks depending on the traces.
Trace.dump_traces(self.success_traces, self.success_traces_path)
touch(os.path.join(self.job_dir, finished_flag))
break
elif self.generation == max_gen:
self.logger.info("Failed at max generation.")
if max(scores) >= self.seed_fitness:
best_gen, best_vid, self.best_score = self.get_best_variant(1, self.generation)
promising_trace = self.load_variant_trace(best_gen, best_vid)
self.logger.info("Save the promising trace %.2f of %d:%d" % (best_score, best_gen, best_vid))
self.promising_traces.append(promising_trace)
Trace.dump_traces(self.promising_traces, self.promising_traces_path, exclude_traces=self.success_traces)
break
# Crossover
if self.xover_rate > 0:
self.popul = self.select(self.popul, scores, self.pop_size/2)
self.logger.debug("After selecting goods and replacing bads, we have %d variants in population." % len(self.popul))
for p1,p2 in zip(self.popul[0::2], self.popul[1::2]):
c1, c2 = PdfGenome.crossover(p1, p2)
self.popul.append(c1)
self.popul.append(c2)
self.logger.debug("After crossover, we have %d variants in population." % len(self.popul))
else: # No Crossover
self.popul = self.select(self.popul, scores, self.pop_size)
self.logger.debug("After selecting goods and replacing bads, we have %d variants in population." % len(self.popul))
# Mutation
for i in range(len(self.popul)):
if i not in self.vid_from_trace:
self.logger.debug("Generating %d:%d variant" % (self.generation+1, i))
self.popul[i] = PdfGenome.mutation(self.popul[i], self.mut_rate, self.ext_genome)
else:
self.logger.debug("Keep %d:%d variant from trace." % (self.generation+1, i))
self.generation = self.generation + 1
self.logger.info("Stopped the GP process with max fitness %.2f." % self.best_score)
touch(os.path.join(self.job_dir, result_flag % self.best_score))
return True
def initial_population(self):
logger = self.logger
logger.info("Getting initial population from existing mutation traces (success: %d, promising: %d)." \
% (len(self.success_traces), len(self.promising_traces)))
popul = []
traces = self.success_traces + self.promising_traces
traces = Trace.get_distinct_traces(traces)
logger.info("Got %d distinct traces" % len(traces))
self.traces = traces
self.remaining_traces_id = range(len(traces))
if 0 < len(self.remaining_traces_id) <= self.pop_size:
tid_picked = self.remaining_traces_id
elif len(self.remaining_traces_id) > self.pop_size:
tid_picked = random.sample(self.remaining_traces_id, self.pop_size)
tid_picked.sort()
else:
tid_picked = []
# generate_variants_from_traces
for i in tid_picked:
self.remaining_traces_id.remove(i)
logger.debug("Generating %d variant from existing trace." % i)
trace = traces[i]
variant_root = Trace.generate_variant_from_trace(self.seed_root, trace, self.ext_genome)
popul.append(variant_root)
if len(popul) < int(self.pop_size):
logger.info("Getting %d more variants in initial population by random mutation." \
% (int(self.pop_size) - len(popul)))
while len(popul) < int(self.pop_size):
i = len(popul)
logger.debug("Getting variant %d in initial population." % i)
root = deepcopy(self.seed_root)
root = PdfGenome.mutation(root, self.mut_rate, self.ext_genome)
popul.append(root)
return popul
def get_best_variant(self, start_gen, end_gen):
best_gen = 1
best_vid = 0
best_score = LOW_SCORE
for gen in range(start_gen, end_gen+1):
scores = self.fitness_scores[gen]
if max(scores) > best_score:
best_score = max(scores)
best_gen = gen
best_vid = scores.index(best_score)
return best_gen, best_vid, best_score
def select(self, orig_list, scores, sel_size):
# when reverse==False, select variants with lower score, otherwise select higher scores.
sorted_indices = [i[0] for i in sorted(enumerate(scores), key=lambda x:x[1], reverse=True)]
ret = []
self.vid_from_trace = []
for i in sorted_indices[:sel_size]:
if scores[i] == LOW_SCORE:
if len(self.remaining_traces_id) > 0:
# TODO: need to label these, not to mutate in next generation.
self.vid_from_trace.append(i)
tid_picked = random.choice(self.remaining_traces_id)
self.remaining_traces_id.remove(tid_picked)
self.logger.info("Ignored a variant with low score, generating from existing trace %d" % tid_picked)
trace = self.traces[tid_picked]
new_variant = Trace.generate_variant_from_trace(self.seed_root, trace, self.ext_genome)
ret.append(new_variant)
elif self.generation == 1:
self.logger.info("Ignored a variant with low score, replace with original seed.")
ret.append(deepcopy(self.seed_root))
else:
choice = random.choice(['seed', 'last_gen_best', 'historic_best'])
if choice == "seed":
self.logger.info("Ignored a variant with low score, replace with original seed.")
ret.append(deepcopy(self.seed_root))
elif choice == "last_gen_best":
best_gen, best_vid, best_score = self.get_best_variant(self.generation-1, self.generation-1)
best_root = self.load_variant(best_gen, best_vid)
ret.append(best_root)
self.logger.info("Ignored a variant with low score, replace with best variant in last generation[%d, %d]." % (best_gen, best_vid))
elif choice == "historic_best":
best_gen, best_vid, best_score = self.get_best_variant(1, self.generation-1)
best_root = self.load_variant(best_gen, best_vid)
ret.append(best_root)
self.logger.info("Ignored a variant with low score, replace with best variant in historic generation[%d, %d]." % (best_gen, best_vid))
else:
self.logger.info("Selected a file with score %.2f" % scores[i])
ret.append(orig_list[i])
return ret
def get_opt(argv):
classifier_name = None
start_file = None
ext_genome_folder = None
pop_size = None
max_gen = None
mut_rate = None
xover_rate = 0
stop_fitness = None
random_state_file_path = None
token = None
round_id = 1
help_msg = "gp.py -c <classifier name> -o <oracle name> \
-s <start file location> -e <external genome folder> \
-p <population size> -g <max generation> \-m <mutation rate> \
-x <crossvoer rate> -r <random_state_file_path> -t <task_token>\
--round <round_id>\
-f <stop criterion in fitness score>"
if len(argv) < 2:
print help_msg
sys.exit(2)
try:
opts, args = getopt.getopt(argv[1:],"hc:s:e:p:g:m:f:x:r:t:",["classifier=",
"sfile=",
"extgenome=",
"popu=",
"gen=",
"mut=",
"fitness=",
"crossover=",
"random_state=",
"token=",
"round=",
])
except getopt.GetoptError:
print help_msg
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print help_msg
sys.exit()
elif opt in ("-c", "--classifier"):
classifier_name = arg
elif opt in ("-s", "--sfile"):
start_file = arg
elif opt in ("-e", "--extgenome"):
ext_genome_folder = arg
elif opt in ("-p", "--popu"):
pop_size = int(arg)
elif opt in ("-g", "--gen"):
max_gen = int(arg)
elif opt in ("-m", "--mut"):
mut_rate = float(arg)
elif opt in ("-x", "--crossover"):
xover_rate = float(arg)
elif opt in ("-f", "--fitness"):
stop_fitness = float(arg)
elif opt in ("-r", "--random_state"):
random_state_file_path = arg
elif opt in ("-t", "--token"):
token = arg
elif opt in("--round"):
round_id = int(arg)
if xover_rate != 0 and pop_size % 4 != 0:
print "The population size should be times of 4."
sys.exit(2)
print classifier_name, start_file, ext_genome_folder, \
pop_size, max_gen, mut_rate, xover_rate, \
stop_fitness, random_state_file_path, token, round_id
return classifier_name, start_file, ext_genome_folder, \
pop_size, max_gen, mut_rate, xover_rate, \
stop_fitness, random_state_file_path, token, round_id
if __name__ == "__main__":
classifier_name, start_file_path, \
ext_genome_folder, pop_size, max_gen, mut_rate, \
xover_rate, stop_fitness, random_state_file_path, \
task_token, round_id = get_opt(sys.argv)
start_hash = os.path.basename(start_file_path).split('.')[0]
for rid in range(1, round_id + 1):
job_dir = "./results/%s/log_r%d/classifier=%s,mut=%.1f,xover=%.1f,popsz=%d,maxgen=%d,stopfit=%.2f,start=%s" \
% (task_token, rid, classifier_name, mut_rate, xover_rate, pop_size, max_gen, stop_fitness, start_hash)
if not os.path.isdir(job_dir):
os.makedirs(job_dir)
# skip the succeeded tasks in previous rounds.
# skip all the visited tasks in the current round.
if os.path.exists(os.path.join(job_dir, finished_flag)):
sys.exit(0)
if rid == round_id and os.path.exists(os.path.join(job_dir, visited_flag)):
sys.exit(0)
traces_dir = "./results/%s/trace/" % task_token
if not os.path.isdir(traces_dir):
os.makedirs(traces_dir)
success_traces_path = traces_dir + "success_traces.pickle"
promising_traces_path = traces_dir + "promising_traces.pickle"
log_file_path = os.path.join(job_dir, visited_flag)
setup_logging(log_file_path)
logger = logging.getLogger('gp.core')
logger.info("Starting logging for a GP process...")
# Due to logging is called in pdfrw, they have to be imported after basicConfig of logging.
# Otherwise, the above basicConfig would be overridden.
from lib.pdf_genome import PdfGenome
from lib.trace import Trace
if classifier_name == 'pdfrate':
from lib.fitness import fitness_pdfrate as fitness_func
elif classifier_name == 'hidost':
from lib.fitness import fitness_hidost as fitness_func
elif classifier_name == "hidost_pdfrate":
from lib.fitness import fitness_hidost_pdfrate as fitness_func
elif classifier_name == "hidost_pdfrate_mean":
from lib.fitness import fitness_hidost_pdfrate_mean as fitness_func
elif classifier_name == "hidost_pdfrate_sigmoid":
from lib.fitness import fitness_hidost_pdfrate_sigmoid as fitness_func
gp_params = {'pop_size': pop_size, 'max_gen': max_gen, \
'mut_rate': mut_rate, 'xover_rate': xover_rate, \
'fitness_threshold': stop_fitness}
ext_genome = PdfGenome.load_external_genome(ext_genome_folder)
try:
gp = GPPdf( job_dir = job_dir,
seed_sha1 = start_hash,
seed_file_path = start_file_path,
logger = logger,
random_state_file_path = random_state_file_path,
ext_genome = ext_genome,
success_traces_path = success_traces_path,
promising_traces_path = promising_traces_path,
gp_params = gp_params,
fitness_function = fitness_func,
)
gp.run()
except Exception, e:
touch(os.path.join(job_dir, error_flag))
logger.exception(e)
sys.exit(1)